Name:

1. (6 points)

In this question all distances are expressed in kilometres and time is in hours

Ship A starts sailing with a velocity vector $\begin{pmatrix} 30 \\ -40 \end{pmatrix}$ from a port located at (0,30).

- (a) Find a vector equation of the path of ship A.
- (b) Find the speed of ship A.

Ship B starts sailing an hour later from a port located at (10, -10). The two ships meet at a point (90, -90).

(c) Find a vector equation of the path of ship B.

- 2. (6 points) Let $f(x) = e^{2x}$.
 - (a) Find the first three derivatives of f(x).
 - (b) Prove by induction that $f^n(x) = 2^n e^{2x}$, where $f^n(x)$ denotes the *n*-th derivative of f(x).

- 3. (6 points) Consider the region in the first quadrant bounded by the graphs of $y = x^3$ and y = 4x.
 - (a) Find the value of k such that the line x = k divides the region into two regions of equal area.
 - (b) Find the value of m such that the line y = m divides the region into two regions of equal area.

- 4. (6 points) The velocity of a particle moving in a straight line can be modelled by $v(t) = 5\sin^2 y \cos t$ for $0 \le t \le 2\pi$, where v is measured in cms^{-1} and t is measured in seconds.
 - (a) Find the times when the particle is at rest, and describe its movement over the entire interval.
 - (b) Find the displacement of the particle in the given time interval, and interpret your answer.
 - (c) Find the total distance covered by the particle.

5. (6 points) Given the numbers:

$$z_1 = \operatorname{cis} \frac{3\pi}{4}$$
 and $z_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$

Find:

- (a) z_1 in Cartesian form,
- (b) z_2 in polar form,
- (c) $z_1 \times z_2$ in both forms.

Hence find the exact values of:

(d) $\sin \frac{17\pi}{12}$

(e) $\tan \frac{17\pi}{12}$

- 6. (5 points) The point O is the centre of a the regular hexagon ABCDEF. Given that $\vec{OA} = \mathbf{a}$ and $\vec{AB} = \mathbf{b}$, express in terms of \mathbf{a} and \mathbf{b} :
 - (a) \vec{OB}
 - (b) \vec{BD}
 - (c) \vec{FC}

What does the result in (c) tells you about the relationship between AB and FC.

- 7. (5 points) Find the number of 8 digit numbers which:
 - (a) contain exactly 3 zeros,
 - (b) contain exactly 3 zeros and the no two zeros are next to each other.