
What are the properties of a Fibonacci
sequence?

1 Introduction

One of the best architects of the 20th century modernism, Le Corbusier believed
that architecture built on the basis of Fibonacci sequence would be prefect and
aestheticaly pleasing, thus many of his best known projects such as Villa Savoye,
Villa Garche, Chapel of Ronchamp or the headquaters of United Nations in New
York include golden ratio, the ratio of the terms of Fibonacci sequence, in their
proportions.1 Additionally, it is believed that even ancient temples were built on
the golden proportion. As I plan to study architecture, I believe that it is vital for
me to understand better the rules used by architects over the centuries, and how
did they define beauty in their projects. As golden proportion is one of the basic,
simple architectural ”tools”, I am motivated to investigate the Fibonacci sequence,
so to comprehend the origin of the ratio and other characteristics of the sequence.

Fibonacci sequence is probably one of the most known sequences. Golden ratio and
golden spiral derived on its basis are commonly found in nature, art, music and
architecture2. What is intriguing is that it is not only so common in the surronding
world, but also in a variety of areas of mathematics. There is a wide range of mathe-
matical tools and methods of proving can be used in its analysis. In my exploration

1Meisner, G. (2014) UN Secretatiat Building, Le Corbusier and the Golden Ratio.
2Lamb, R. The Golden ratio in Nature. Palmer, L. (2015) See How Artists Discover Simplicity

as an Art Form in Works Which Reflect the Golden Ratio. What is interesting, number of petals
of many plants, e.g. lilies and wild roses are Fibonacci numbers. Similarily number of spirals in the
pinecones, a lot of vegetables, friuts and flowers is also Fibonacci. Shell of a marine mollusc Nautilus
is a logarithimc spiral with growth factor equal to golden ratio. This may mean, that Fibonacci
sequence and golden ratio reflect natural patterns. Moreover, researchers tend to frequently find
the ratio in well-known works of art, such as ”The Creation of Adam” by Michelangelo or ”The
Birth of Veus” by Botticelli, what sugest that the ratio may be the indicator of aesthetics.
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I aim at investigating properties of the sequence, but what is most important is
that I will present various methods of analysis, that include a proof by induction,
proof with the use of geometry, manipulations of series, matrices, and finally linear
diophantine equations. It will be preceded by basic analysis of the sequence: firstly
the ratio between the terms Fn and Fn−1 as n goes to infinity, that inspired me to
chose this topic, and then finding explicit formula of the sequence.

2 Analysis

2.1 Definitions

I will start the exploration with defining crucial terms- firstly, Fibonacci sequence
itself. It is an arithmetic sequence that can be defined by the formula

Fn = Fn−1 + Fn−2 for n ≥ 2 where F0 = 0 F1 = 1.

The first terms of the sequence are: 0, 1,1,2,5,8,13,21..

This type of formula is called recursive formula (alternatively reccurence relation).
It descibes nth term of the sequence using the previous terms. It is not a perfect
way to describe the sequence, as to find 100th term, 99th, 98th and possibly the
preceeding ones must be known.

It can be manipulated to obtain the explicit formula for the nth term in the terms of
n. Closed form equation of the Fibbonaci sequence can be found by solving second
order linear homogeneous reccurence relation.

When comes to a golden ratio, it is a ratio between the consequitve Fibonacci
numbers Fn and Fn−1 as n goes to infinity. It will be analyzed in the following
section.

2.2 Golden ratio

Let’s approximate the

lim
n→∞

Fn
Fn−1

by the substituting values of F.
F3

F2
= 2 F6

F5
= 1.6 F7

F6
= 1.625 F8

F7
≈ 1.615385... F9

F8
≈ 1.619047...
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F300

F299
≈ 1.618033... F10000

F9999
≈ 1.1.618033...

The approximations of a couple of terms sugested that the value of golden ratio is
somewhere between 1.61 and 1.62. Now I will find find its exact value.

Fn = Fn−1 + Fn−2( for n ≥ 2)

Fn

Fn−1
= 1 + Fn−2

Fn−1

Let limn→∞
Fn

Fn−1
= Φ. As the formula for Fn is recursive, we know that

limn→∞
Fn

Fn−1
= limn→∞

Fn−1

Fn−2
= Φ. Hence, limn→∞

Fn−2

Fn−1
= 1

Φ
.

Now I will use the equation above to find Φ.

We know that limn→∞
Fn

Fn−1
= limn→∞(1 + Fn−2

Fn−1
)

Hence, Φ = 1 + 1
Φ

.

Multiplying both sides of the equation by Φ:

Φ2 = Φ + 1
Φ2 − Φ− 1 = 0
∆ = 1− (−4) = 5

Φ = 1±
√

5
2

φ = 1+
√

5
2

ψ = 1−
√

5
2

We got the two solutions, of which one is negative. As Fibbonaci numbers are
natural, the ratio must be also positive, while ψ ≈ −0.618. The solution φ = Φ,
and is approximately 1.618.

A characterisitc of the ratio I find beautiful is how the equation Φ = 1 + 1
Φ

can be
manipulated to create a continued fraction, having all coefficinets equal to one. In
the following expansion, every time for Φ I substitute Φ = 1 + 1

Φ
.

Φ = 1 + 1
Φ

= 1 +
1

1 +
1

Φ

= 1 +
1

1 +
1

1 +
1

Φ

=
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= 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·
If we stop this fraction, we get an approximation of Φ- the further we go, the more
accurate.

Φ1 = 1 + 1
1

= 2
1

Φ2 = 1 +
1

1 +
1

1

= 1 + 1
2

= 3
2

Φ3 = 1 +
1

1 +
1

1 +
1

1

= 1 +
1

1 +
1

2

= 1 + 2
3

= 5
3

It can be seen that the following fractions are the ratios of the subsequent terms
of the sequence. ”Contiuning” this continued fractions means in fact adding 1 to
the reciprocal of the previous fraction. Knowing that golden ratio Φ is the limit
limn→∞

Fn

Fn−1
, the relation mentioned above can be proved the following way:

1 + 1
Φ

= 1 + 1
Fn

Fn−1

= 1 + Fn−1

Fn
= Fn+Fn−1

Fn
= Fn+1

Fn

This is thanks to the charcterisitc of the sequence, that the succeding terms added
up form the next one. 3

Property of the ratio that could have made it useful in architecture is the presence
of golden rectangles.

3Knott, R. (2016) The Golden section ratio: Phi.
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Figure 1: Golden rectangles ABCD and EFCD 4

If golden ratio is a ratio of the sides of a rectangle, it characterized by self-
similarity, what means that if I substract a square from the rectangle, what is
formed is another rectangle with the proportion of side lenghts Φ : 1.

Proof:

Suppose there is a rectangle ABCD with AB = 1 and AD = Φ. On the side AD
there is marked a point E, and on BC point F, so that ABFE is a square. The
rectangle is golden, if the rectangle EFCD is similar to ABCD, so the ratio of the
sides ED to DC is the same as AB to AD. The lenght of the side ED is Φ− 1. They
would be equal if Φ

1
= 1

Φ−1
. Then

1 = Φ2 − Φ
Φ2 − Φ− 1 = 0
∆ = 5
φ = 1+

√
5

2
ψ = 1−

√
5

2

I reject the second solution as lenght of a side must be positive. Then LHS=RHS
what proves that the rectangles are similar.

4Sketched in Desmos, Graphing Calculator
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2.3 Finding explicit formula of Fibonacci sequence

In this section I am going to find the explicit formula for the nth term of the Fib-
bonaci sequence by solving second order homogenous reccurence relation.

Fn = Fn−1 + Fn−2 for n ≥ 2
so Fn+2 = Fn+1 + Fn for n ≥ 0

Suppose cαn is a solution to the above reccurence relation. Then

cαn+2 = cαn+1 + cαn

cαn(α2 − α− 1) = 0, what is a characteristic equation of this recurrence relation.

α1 = 1+
√

5
2

α2 = 1−
√

5
2

α3 = 0
As the roots α1, α2 and α3 are distinct, the recurrence relation has closed form
solution

Fn = A(1+
√

5
2

)n +B(1−
√

5
2

)n + C × 0n,

but Cα3 does not change anything, as it is equal to 0, so I will not be considering
it in my calculations. To solve the recurrence, I substitute the initial conditions of
this relation that are F0 = 0 and F1 = 1.
0 = A+B
1 = A(1+

√
5

2
) +B(1−

√
5

2
)

A = −B
1 = B(−1−

√
5

2
) +B(1−

√
5

2
)

1 = B(−2
√

5
2

)
B = −1√

5

A = −B = 1√
5

so, substituting calculated values of A and B we get a formula:

Fn = ( 1√
5
)((1+

√
5

2
)n − (1−

√
5

2
)n) =

( 1+
√
5

2
)n−( 1−

√
5

2
)n√

5

This way I have derived the equation for the nth term of the Fibonacci sequence
known as Binet’s formula.

Binet’s formula can be also derived in an alternative way with the use of a golden
ratio φ and ψ. φ and ψ are the solutions of the quadratic x2 − x − 1 = 0. By
rearranging it we get:

x2 = x+ 1 Now multiply both sides by x
x3 = x2 + x, and by substituting the first equation we get
x3 = 2x+ 1

6



I substitute the value φ and repeat the process up to the 10th power, trying to ob-
serve any realtion between the following experssions.

φ4 = 2φ2 + φ = 3φ+ 2
φ5 = 3φ2 + 2φ = 5φ+ 3
φ6 = 5φ2 + 3φ = 8φ+ 5
φ7 = 8φ2 + 5φ = 13φ+ 8
φ8 = 13φ2 + 8φ = 21φ+ 13
φ9 = 21φ2 + 13φ = 34φ+ 21
φ10 = 34φ2 + 21φ = 55φ+ 34

It can be observed that the coefficients are the following Fibbonaci numbers, so it
can be supposed that

φn = Fnφ+ Fn−1, and as the situation looks the analogical for ψ, then
ψn = Fnψ + Fn−1.

This relation can be proved by induction.
φn = Fnφ+ Fn−1 n ∈ Z+

Step 1. n = 1
φ1 = F1φ+ Fn−1 = φ+ 0 = φ

Step 2. n = k
Assume φk = Fkφ+ Fk−1

Step 3. n = k + 1
Need to show φk+1 = Fk+1φ+ Fk

LHS = φkφ = (Fkφ + Fk−1)φ = Fkφ
2 + Fk−1φ = Fk(φ + 1) + Fk−1φ =

Fkφ+ Fk + Fk−1φ = φ(Fk + Fk−1) + Fk = φFk+1 + Fk = RHS

As φn = Fnφ+Fn−1 is true for n = 1, and if true for n = k, then true for n = k+ 1,
then by the principle of mathematical induction it is true for all n ∈ N. The same
proof is valid for ψ, so there is no need to repeat it.

To derive Binet’s formula I substract ψn from φn:
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φn − ψn = Fn(φ− ψ)

Fn = φn−ψn

φ−ψ

Then I substitute the values of φ and ψ calculated in the previous part:

Fn =
( 1+
√

5
2

)n−( 1−
√
5

2
)n

1+
√
5

2
− 1−

√
5

2

Fn =
( 1+
√
5

2
)n−( 1−

√
5

2
)n√

5

In this section I have focused on the basic analysis and manipulation of the sequence.
I have started with the definitions, as they are crucial for understanding of my further
methods. After finding an exact value of Φ, I have derived an explicit formula of
the sequence through solving reccurence relation. In the next step I have derived it
in another way, this time with the use of a golden ratio and the second solution a a
quadratic, ψ, so to present a method that is beyond the curriculum. In the following
section I will concentrate on proving chosen characterisitcs of the Fibonacci sequence
with the use of various tools.

2.4 Properties of the Fibbonaci sequence

In this section I will prove some of the features of the sequence with the use of
different methods.

1. Manipulations of series

Equation for the sum of n Fibonacci numbers, can be derived after simple manipu-
lations involving the relations between the consecutive terms of the sequence.

Theorem:
∑n

i=1 Fn = Fn+2 − 1

I write the terms that I want to add as differences of the two following Fibonacci
numbers, from Fn to F1. F0 = 0, so it does not count.

Fn = Fn+2 − Fn+1

Fn−1 = Fn+1 − Fn
Fn−2 = Fn − Fn−1

Fn−3 = Fn−1 − Fn−2

Fn−4 = Fn−2 − Fn−3

...
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F2 = F4 − F3

F1 = F3 − F2

And now I am summing the terms. Notice that most of the elements repeats with
negative sign, thus they are cancelled. The terms that remain, as they ”have nothing
to be cancelled with”, are Fn+2 and F2(= 1). Thus∑n

i=1 Fn = Fn+2 − 1

2. Geometric approach

The equation for the sum of squares of the Fibbonaci numbers is the product of two
consecutive terms, and this can be showed with the geometric representation.

Theorem:
∑n

i=1 F
2
i = FnFn+1

Proof:
I take n squares of the lenghts of sides equal to the consecutive Fibbonaci numbers.
Those would be 1 × 1, 1 × 1, 2 × 2, 3 × 3, 5 × 5, ... Fn × Fn. Then I
place them one next to another creating rectangles. On each stage of addition, the
dimensions of the rectangles created are the lenght of the newly added square × (the
previous square + newly added square), what means literally Fn×(Fn+Fn−1). Since
Fn+Fn−1 = Fn+1, so the sum of squares of n Fibbonaci numbers is equal to FnFn+1.5

Figure 2: Rectangle of the side lenghts F10 × F11
6

In this case there are 10 sqares, and the dimensions of the rectangle are 55×89, so
in other words F10×F11. The area of this rectangle, is the same as

∑10
i=1 F

2
i = F10F11,

5Honsberger, R.(1985) Mathematical Gems III.
6Sketched in Desmos, Graphing Calculator
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and equal to 4895.

3. Proof with the use of matrix algebra

Cassini’s identity is a property of the sequence that can be easily proved by induc-
tion with the use of matrices. It states that

Fn+1Fn−1 − F 2
n = (−1)n for n ≥ 1

Matrix is a tool used to solve linear equations, and is represented in a form similar
to a table in brackets, where its elements are arranged in rows and columns. For
the Fibonacci sequence, the matrix Q is of the size 2× 2, and is defined by(

1 1
1 0

)
=

(
F2 F1

F1 F0

)
7

Determinant of a matrix is the value that can be derived from the elements of a
matrix, and is denoted by detQ. For small matrices of the size 2 × 2, its value is
calculated the following way:

det

(
x y
z v

)
= xv − yz 8

In my case, det(Q) = 0 − 1 = −1 The use of matrices makes some things easier to
be observed, than with the use of another methods, and that is why I am going to
use it to prove Cassini’s identity with its use.

I will try to prove by induction that for n ≥ 1, Qn =

(
Fn+1 Fn
Fn Fn−1

)
Step 1.

Q1 =

(
F2 F1

F1 F0

)
=

(
1 1
1 0

)
For n = 1 I did not have to do any additional calulations. As I want to present how
matrices 2× 2 are multiplied, I will find the matrix Q2 as well.

Q2 =

(
F2 F1

F1 F0

)
×
(
F2 F1

F1 F0

)
=

(
1 1
1 0

)
×
(

1 1
1 0

)
Multiplication of matrices looks similar to a dot product I know form vectors. Firstyl

7Wolfram Math World. Fibonacci Q-Matrix
8Wikipedia, Free Encyclopedia. Determinant.
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I mulitply the first number of the first row by the first of the first column of the
second matrix, then the second of the first row by the second of the first column,
etc. In this case it looks the following:(

(1×1+1×1) (0×1+1×0)
(1×1+0×1) (1×1+0×0)

)
=

(
2 1
1 1

)
X

Step 2. Assume true for n = k.

Qk =

(
Fk+1 Fk
Fk Fk−1

)
Step 3. Show it it true for n = k + 1

Qk+1 = Qk ×Q =

(
Fk+1 Fk
Fk Fk−1

)
×
(

1 1
1 0

)
=

=

(
(Fk+1×1+Fk×1) (Fk−1×1+Fk×0)
(Fk×1+Fk−1×1) (Fk×1+Fk+1×0)

)
=

(
Fk+2 Fk+1

Fk+1 Fk

)
As Qn =

(
Fn+1 Fn
Fn Fn−1

)
is true for n = 1, and assuming it is true for n = k, then

true for n = k + 1, therefore by the principle of mathematical induction, Qn =(
Fn+1 Fn
Fn Fn−1

)
is true for all n ≥ 1

Now let’s calculate the determinant of Q.
det(Qn) = Fn−1Fn+1 − FnFn = Fn−1Fn+1 − F 2

n , what is a left hand side of the
Cassini’s identity. Now let’s calculate the right hand side. To do it, it is important
to mention one more property of determinant, that is det(AB) = det(A) det(B).
With this knowledge,

det(An) = det(A× An−1) = det(A)× det(An−1) = det(A)n

so in my case det(Qn) = det(Q)n, and knowing that det(Q) = −1,
Fn−1Fn+1 − F 2

n = (−1)n

Cassini’s identiy is useful in proving the next property of Fibonacci numbers, that
is, the consecutive pairs of terms are relatively prime.

4. Linear diophantine equations

All consecutive Fibonacci numbers are coprime, what means that their greatest com-
mon divisor is equal to 1. According to the number theory, that I have studied in
Discrete Mathematics option, if d = GCD(x, y), then there exists a pair of integers
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a, b such that d = ax+by 9. In the case of Fibonacci numbers, if d = GCD(Fn+1, Fn),
then d = aFn+1 + bFn. Here is where I will use Cassini’s identity.

Fn−1Fn+1−F 2
n = (−1)n. Let’s distinguish the two cases: if n is even and if n is odd.

a) n is even. Then Fn−1Fn+1 − FnFn = 1
b) n is odd. Then −Fn−1Fn+1 + FnFn = 1

If Fn+1 is my x, and Fn is my y, then ±Fn−1 becomes a and ±Fn becomes b (Fi-
bonacci numbers are integers, so it is true), and the conclusion is that d is found to
be equal to 1.

3 Conclusion

In my investigation I aimed at presenting to a reader properties of a Fibonacci se-
quence that make it unique and interesting. I have started with a golden ratio, Φ,
being commonly found in the surronding world, e.g. in flowers or shells, but also
architecture, as it was the main factor that grabbed my attention and enccouraged
to explore this sequence.

Then I have focused on the sequence itself. Firstly I have derived its formula
in the two ways, one by solving reccurence relation and second alternative, that
I consider to be more difficult, because it required observing the relation between
the terms, but also more attractive and less popular. Solving reccurence relation is
rather a basic method, included in the curriculum of option Discrete Mathematics,
that I have studied at school, so that is why I have decided to include also something
more.

The next part was focused on the features of the sequence that I found worth
mentioning. The chosen topic is very broad and reaches many areas of mathematics,
what allowed me to choose properties that I could prove using varied methods, such
as by combinatoric manipulations, geometric approach, proof with the use of matri-
ces and linear diophantine equations, but additionally to present that one property
can be used to prove another, as I did with Cassini’s identity and proving that GCD
of pairs of terms is 1. I have tried not to repeat similar methods of proving, but
I am aware that most of the propeties could have been proved by mathematical
induction. Nonetheless, I decided to use the ones that I did not study at school, so

9Quinn, C., et al..(2014) Mathematics for the Intenational Student. Mathematics HL (Option):
Discrete Mathematics
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to broaden my knowledge and interest the reader.

My interest with architecture was the main factor that made me choose this
topic, as I wanted to explore the sequence adored by my favourite architect, Le
Corbusier, who has even created a new metric system, The Modulor, based on Fi-
bonacci10. I hoped I will be able to answer the question what is so unique about the
sequence and why did he defined golden ratio as the most beautiful proportion, but
now I see that without investigating other sequences and comparing their properties,
but focusing only on the one I will not be able to do it, thus my methods should
be changed. What was very beneficial for me is that I became familiar with new
mathematical tools, like matrices and continued fractions, but also deepened my
understaning of basic methods, such as solving recurrences and proving by induc-
tion, but also I have learnt how to sketch in a graphing calculator, Desmos. As the
properties I have described are only a small percentage of all hidden in the sequence,
I think that the topic remains open and worth of further research.
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