M10/5/MATHL/HP2/ENG/TZ2/XX/M+

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2010

MATHEMATICS

Higher Level

Paper 2

Samples to team leaders	June 8 2010
Everything (marks, scripts etc) to IB Cardiff	June 15 2010

SECTION A

1.	(a)	18n-10 (or equivalent)	A1	
	(b)	$\sum_{1}^{n} (18r - 10) \text{(or equivalent)}$	A1	
	(c)	by use of GDC or algebraic summation or sum of an AP	(M1)	
		$\sum_{r=1}^{15} (18r - 10) = 2010$	A1	
		1		[4 marks]
2.	(a)	p + q = 0.44	A1	
		2.5p + 3.5q = 1.25	(M1)A1	
		p = 0.29, q = 0.15	A1	
	(b)	use of $\operatorname{Var}(X) = \operatorname{E}(X^2) - \operatorname{E}(X)^2$	(M1)	
		Var(X) = 2.10	A1	
				[6 marks]
		(-21-15)		
-		-1 - 21 - 13		

3.	(a)	required to solve $P\left(Z < \frac{21-15}{\sigma}\right) = 0.8$	(M1)	
		$\frac{6}{\sigma} = 0.842$ (or equivalent)	(M1)	
		$\Rightarrow \sigma = 7.13$ (days)	A1	N1
	(b)	P(survival after 21 days) = 0.337	(M1)A1	
				[5 marks]

4.	(a)	rewrite the equation as $(4x-1)\ln 2 = (x+5)\ln 8 + (1-2x)\log_2 16$	(M1)
		$(4x-1)\ln 2 = (3x+15)\ln 2 + 4 - 8x$	(M1)(A1)
		$x = \frac{4 + 16\ln 2}{8 + \ln 2}$	A1

(b)
$$x = a^2$$
 (M1)
 $a = 1.318$ A1

Note: Treat 1.32 as an *AP*. Award A0 for \pm .

[6 marks]

5. use of cosine rule: $BC = \sqrt{(8^2 + 7^2 - 2 \times 7 \times 8\cos 70)} = 8.6426...$ (M1)A1 Note: Accept an expression for BC². BD = 5.7617... (CD = 2.88085...) A1 use of sine rule: $\hat{B} = \arcsin\left(\frac{7\sin 70}{BC}\right) = 49.561...^{\circ}$ ($\hat{C} = 60.4387...^{\circ}$) (M1)A1 use of cosine rule: $AD = \sqrt{8^2 + BD^2 - 2 \times BD \times 8\cos B} = 6.12$ (cm) A1 Note: Scale drawing method not acceptable.

[6 marks]

6.	(a)	required to solve $e^{-\lambda} + \lambda e^{-\lambda} = 0.123$ solving to obtain $\lambda = 3.63$	MIA1 A2	N2
	No	solving to obtain $\lambda = 3.63$ A Note: Award A2 if an additional negative solution is seen but A0 if only a negative solution is seen. A P(0 < X < 9)		
	(b)			
		$= P(X \le 8) - P(X = 0)$ (or equivalent)	(M1)	
		= 0.961	A1	
				[6 marks]
7.	(a)	use GDC or manual method to find a, b and c	(M1)	
		obtain $a = 2, b = -1, c = 3$ (in any identifiable form)	A1	
	(b)	*	(M1)	
		obtain $x = \frac{4-11t}{2}$; $y = \frac{-7t}{2}$; $z = t$ (or equivalent)	(A1)	
		$\mathbf{r} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -5.5 \\ 3.5 \end{pmatrix}$ (accept equivalent vector forms)	M1 A 1	
		$i = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + i \begin{bmatrix} -3.5 \\ 1 \end{bmatrix}$ (accept equivalent vector forms)	WIIAI	
	No	te: Final A1 requires $r = $ or equivalent.		
				[6 marks]

8. (a) the expression is

 $\frac{n!}{(n-3)!\,3!} - \frac{(2n)!}{(2n-2)!\,2!} \tag{A1}$

$$\frac{n(n-1)(n-2)}{6} - \frac{2n(2n-1)}{2}$$
 MIA1

$$=\frac{n(n^2-15n+8)}{6} \quad \left(=\frac{n^3-15n^2+8n}{6}\right)$$
 A1

(b) the inequality is

$$\frac{n^{3}-15n^{2}+8n}{6} > 32n$$
attempt to solve cubic inequality or equation
$$n^{3}-15n^{2}-184n > 0 \qquad n(n-23)(n+8) > 0$$

$$n > 23 \qquad (n \ge 24)$$
A1

[6 marks]

9.

(a) using de Moivre's theorem

 $z^n + \frac{1}{z^n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$ (= 2 cos $n\theta$), imaginary part of which is 0 MIA1

so
$$\operatorname{Im}\left(z^{n}+\frac{1}{z^{n}}\right)=0$$
 AG

(b)
$$\frac{z-1}{z+1} = \frac{\cos\theta + i\sin\theta - 1}{\cos\theta + i\sin\theta + 1}$$
$$= \frac{(\cos\theta - 1 + i\sin\theta)(\cos\theta + 1 - i\sin\theta)}{(\cos\theta + 1 + i\sin\theta)(\cos\theta + 1 - i\sin\theta)}$$
MIA1

Award *M1* for an attempt to multiply numerator and denominator by the Note: complex conjugate of their denominator.

$$\Rightarrow \operatorname{Re}\left(\frac{z-1}{z+1}\right) = \frac{(\cos\theta - 1)(\cos\theta + 1) + \sin^2\theta}{\operatorname{real denominator}}$$
M1A1

Note: Award *M1* for multiplying out the numerator.

$$=\frac{\cos^{2}\theta + \sin^{2}\theta - 1}{\text{real denominator}}$$

$$= 0$$
A1
$$AG$$
[7 marks]

10. (a) the distance of the spot from P is
$$x = 500 \tan \theta$$
 A1
the speed of the spot is
 $\frac{dx}{dt} = 500 \sec^2 \theta \frac{d\theta}{dt}$ (=4000 $\pi \sec^2 \theta$) M1A1

when
$$x = 2000$$
, $\sec^2 \theta = 17$ $(\theta = 1.32581...) \left(\frac{\mathrm{d}\theta}{\mathrm{d}t} = 8\pi\right)$

$$\Rightarrow \frac{dx}{dt} = 500 \times 17 \times 8\pi$$
 MIA1
speed is 214000 (metres per minute) AG

speed is 214000 (metres per minute)

Note: If their displayed answer does not round to 214 000, they lose the final A1.

(b)
$$\frac{d^2x}{dt^2} = 8000\pi \sec^2\theta \tan\theta \frac{d\theta}{dt}$$
 or $500 \times 2\sec^2\theta \tan\theta \left(\frac{d\theta}{dt}\right)^2$ *MIA1*
 $\left(\text{since } \frac{d^2\theta}{dt^2} = 0\right)$

$$=43000000 (=4.30 \times 10^7)$$
 (metres per minute²) A1

[8 marks]

SECTION B

Note:MI is for 1 finite and 1 infinite interval.[2 marks](c)coordinates of local maximum $-3.73 - 2 - \sqrt{3}$, $3.22 \sqrt{6\sqrt{3}}$ AIAI(d)use GDC to obtain one root:141, $-3.18 \text{ or } -4.23$ AI(d)use GDC to obtain one root:141, $-3.18 \text{ or } -4.23$ AI(e)Imarks]Imarks](f)Imarks]Imarks](g)Imarks]Imarks](g)Imarks]Imarks](h)Imarks]Imarks](h)Imarks]Imarks](h)Imarks]Imarks](h)Imarks]Imarks](h)required area is twice that of $y = f(x)$ between -5 and -2 Imarks](h)required area is twice that of $y = f(x)$ between -5 and -2 Imarks](h)Imarks]Imarks]Imarks](h)required area is twice that of $y = f(x)$ between -5 and -2 Imarks](h)Imarks]Imarks]Imarks]Imarks]Imarks]Imarks]Imarks]Imarks]Imarks]	1.	(a)	solving to obtain one root: $1, -2$ or -5 obtain other roots	A1 A1	[2 marks]
$[2 marks]$ (c) coordinates of local maximum $-3.73 - 2 - \sqrt{3}$, $3.22 \sqrt{6\sqrt{3}}$ AIAI [2 marks] (d) use GDC to obtain one root: 1.41, $-3.18 or -4.23$ AI obtain other roots AI [2 marks] (e) (f) required area is twice that of $y = f(x)$ between -5 and -2 MIAI answer 14.9 Note: Award MIA0A0 for $\int_{-s}^{-2} f(x) dx = 7.47$ or NI for 7.47.		(b)	$D = x \in [-5, -2] \cup [1, \infty) \text{ (or equivalent)}$	M1A1	
[2 marks] (d) use GDC to obtain one root: 1.41, -3.18 or -4.23 AI obtain other roots AI [2 marks] (e) (c) (c) (c) (c) (c) (c) (c) (c		Not	M1 is for 1 finite and 1 infinite interval.		[2 marks]
obtain other roots AI [2 marks] (e) (e) (f) required area is twice that of $y = f(x)$ between -5 and -2 answer 14.9 (f) required area is twice that of $y = f(x)$ between -5 and -2 AI AI AI (f) required area is twice that of $y = f(x)$ re		(c)	coordinates of local maximum $-3.73 - 2 - \sqrt{3}$, $3.22 \sqrt{6\sqrt{3}}$	AIA1	[2 marks]
$\int_{-5}^{7} \int_{-2}^{7} \int_{-1}^{7} \int_{-1}^{7} \int_{-2}^{7} \int_{-3}^{7} \int_{-3}^{7$		(d)			[2 marks]
AI for all intercepts.[3 marks]Award AIA0A0 if only the complete top half is shown.[3 marks](f) required area is twice that of $y = f(x)$ between -5 and -2MIA1 A1answer 14.9A1Note: Award MIA0A0 for $\int_{-5}^{-2} f(x) dx = 7.47$ or NI for 7.47.		(e)	$-5 \qquad -2 \qquad -1 \qquad -2 \qquad -1 \qquad -2 \qquad -2 \qquad -1 \qquad -2 \qquad -2$	AIAIAI	
[3 marks] (f) required area is twice that of $y = f(x)$ between -5 and -2 answer 14.9 MIA1 A1 N3 Note: Award M1A0A0 for $\int_{-5}^{-2} f(x) dx = 7.47$ or N1 for 7.47.		Not			
(f) required area is twice that of $y = f(x)$ between -5 and -2 M1A1 answer 14.9 A1 N3 Note: Award M1A0A0 for $\int_{-5}^{-2} f(x) dx = 7.47$ or N1 for 7.47.			Award A1A0A0 if only the complete top half is shown.		[3 marks]
		(f)	answer 14.9		
		Not	te: Award <i>M1A0A0</i> for $\int_{-5}^{-2} f(x) dx = 7.47$ or <i>N1</i> for 7.47.		[3 marks]

Total [14 marks]

12. the median height is 1.18 (a) (i)

(ii) the interquartile range is
$$UQ - LQ$$

= $1.22 - 1.13 = 0.09$ (accept answers that round to 0.09) *A1A1*
Note: Award *A1* for the quartiles, *A1* for final answer.

(b) (i)					
$1.00 < h \le 1.05$	$1.05 < h \le 1.10$	$1.10 < h \le 1.15$	$1.15 < h \le 1.20$	$1.20 < h \le 1.25$	$1.25 < h \le 1.30$
5	9	13	24	19	10
					AIAI

Note: Award A1 for entries within ± 1 of the above values and A1 for a total of 80.

(ii) unbiased estimate of the population mean

$$\left(\frac{5 \times 1.025 + 9 \times 1.075 + 13 \times 1.125 + 24 \times 1.175 + 19 \times 1.225 + 10 \times 1.275}{80}\right) = 1.17 \quad AI$$

unbiased estimate of the population variance

use of
$$s_{n-1}^2 = \left(\frac{n}{n-1}\right) s_n^2$$
 or GDC (M1)
obtain 0.00470 A1

obtain 0.00470

[5 marks]

[3 marks]

(c) (i)
$$P(h \le 1.15 \text{ m}) = \frac{27}{80} (0.3375 \text{ or } 0.338) \left(\text{allow } \frac{26}{80} (0.325) \right)$$
 A1

(ii) use of the conditional probability formula
$$P(A | B) = P(A \cap B) / P(B)$$
 (M1)
obtain $\frac{18}{80} \div \frac{27}{80}$ (A1)(A1)
 $= \frac{2}{80} (0.667) \left(\text{allow } \frac{18}{80} (0.692) \right)$ A1

$$=\frac{2}{3} (0.667) \left(\text{allow} \, \frac{18}{26} \, (0.692) \right)$$
 A1

[5 marks]

Total [13 marks]

A1

13.	(a)	the area of the first sector is $\frac{1}{2}2^2\theta$	(A1)	
		the sequence of areas is 2θ , $2k\theta$, $2k^2\theta$	(A1)	
		the sum of these areas is $2\theta(1+k+k^2+)$	(M1)	
		$=\frac{2\theta}{1-k}=4\pi$	M1A1	
		hence $\theta = 2\pi(1-k)$	AG	
	No	te: Accept solutions where candidates deal with angles instead of area.		[5 marks]
	(b)	the perimeter of the first sector is $4+2\theta$	(A1)	
		the perimeter of the third sector is $4 + 2k^2\theta$	(A1)	
		the given condition is $4 + 2k^2\theta = 2 + \theta$	M1	
		which simplifies to $2 = \theta (1 - 2k^2)$	A1	
		eliminating θ , obtain cubic in k: $\pi(1-k)(1-2k^2)-1=0$	A1	
		or equivalent solve for $k = 0.456$ and then $\theta = 3.42$	AIA1	
				[7 marks]

Total [12 marks]

14.	(a) $g \circ f(x) = \frac{1}{1 + e^x}$	A1	
	$1 < 1 + e^x < \infty$	(M1)	
	range $g \circ f$ is]0, 1[A1	N3
			[3 marks]
	(b) Note: Interchange of variables and rearranging can be	e done in either order.	
	attempt at solving $y = \frac{1}{1 + e^x}$	 M1	
	rearranging		
	$e^x = \frac{1-y}{1-y}$	M1	
	$y (g \circ f)^{-1}(x) = \ln\left(\frac{1-x}{x}\right)$	A1	
	Note: The A1 is for RHS.		
	domain is]0, 1[Al	
	Note: Final <i>A1</i> is independent of the <i>M</i> marks.		
			[4 marks]
	(c) (i) $y = f \circ g \circ h = 1 + e^{\cos x}$	M1A1	

	$y = f \circ g \circ h = 1 + e^{-\alpha x}$ $dy = \sin x e^{\cos x}$	MIA1
	$\frac{dy}{dx} = -\sin x e^{\cos x}$ $= (1 - y)\sin x$	AG
Note	: Second <i>MIA1</i> could also be obtained by solving the differential e	quation.

(ii) **EITHER**

rearranging

 $y\sin x = \sin x - \frac{\mathrm{d}y}{\mathrm{d}x}$ A1

$$\int y \sin x \, dx = \int \sin x \, dx - \int \frac{dy}{dx} \, dx \qquad M1$$
$$= -\cos x - y(+c) \qquad A1$$

$$= -\cos x - \mathrm{e}^{\cos x}(+d) \qquad \qquad \mathbf{A1}$$

OR

$$\int y \sin x \, dx = \int (1 + e^{\cos x}) \sin x \, dx \qquad A1$$
$$= \int \sin x \, dx + \int \sin x \times e^{\cos x} \, dx$$

Note: Either the first or second line gains the A1. = $-\cos x - e^{\cos x}(+d)$ A1M1A1

continued ...

Question 14 continued

(iii) use of definition of y and the differential equation or GDC to identify first minimum at $x = \pi$ (3.14...) (M1)A1

EITHER

the required integral is

Note: $y_{\text{max}} = 1 + e$ and $y_{\text{min}} = 1 + e^{-1}$ but these do not need to be specified.

$$=\pi \int_{\pi}^{0} -x^{2} \sin x e^{\cos x} dx = \pi \times 4.32... = 13.6$$
 (M1)A1

OR

the required integral is

$$=\pi \int_{1+e^{-1}}^{1+e^{-1}} \arccos \ln(y-1)^{-2} dy = \pi \times 4.32... = 13.6$$
 MIA1

Note: 1 + e = 3.7182... and $1 + e^{-1} = 1.3678...$

[14 marks]

Total [21 marks]