

MARKSCHEME

May 2014

MATHEMATICS

Higher Level

Paper 2

SECTION A

1. METHOD 1

substituting -5+12i+a(2+3i)+b=0equating real or imaginary parts $12+3a=0 \Rightarrow a=-4$ $-5+2a+b=0 \Rightarrow b=13$ (A1)
(A1)

METHOD 2

other root is 2-3i (A1)
considering either the sum or product of roots or multiplying factors (M1) 4=-a (sum of roots) so a=-4 A1 13=b (product of roots)

A1

[4 marks]

14 marksj

2. $X: N(100, \sigma^2)$

$$P(X < 124) = 0.68$$
 (M1)(A1)
 $\frac{24}{\sigma} = 0.4676....$ (M1)
 $\sigma = 51.315...$ (A1)
variance = 2630 (A1)

Notes: Accept use of P(X < 124.5) = 0.68 leading to variance = 2744.

3. the number of ways of allocating presents to the first child is $\binom{7}{3}$ or $\binom{7}{2}$ (A1)

multiplying by
$$\binom{4}{2}$$
 or $\binom{5}{3}$ or $\binom{5}{2}$ (M1)(A1)

Note: Award *M1* for multiplication of combinations.

$$\binom{7}{3} \binom{4}{2} = 210$$
[4 marks]

M1A1

$$\rightarrow \begin{bmatrix} x+2y-z=2\\ -3y+3z=-3\\ 6y+(a-1)z=6 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} x+2y-z=2\\ -3y+3z=-3\\ (a+5)z=0 \end{bmatrix}$$

A1

(or equivalent)

if not a unique solution then a = -5

A1

Note: The first *M1* is for attempting to eliminate a variable, the first *A1* for obtaining two expression in just two variables (plus a), and the second A1 for obtaining an expression in just a and one other variable

-8-

[4 marks]

(b) if a = -5 there are an infinite number of solutions as last equation always true

R1

and if $a \neq -5$ there is a unique solution hence always a solution

R1AG

[2 marks]

Total [6 marks]

5. (a)
$$\frac{\pi}{2}(1.57), \frac{3\pi}{2}(4.71)$$

hence the coordinates are
$$\left(\frac{\pi}{2}, \frac{\pi}{2}\right), \left(\frac{3\pi}{2}, \frac{3\pi}{2}\right)$$

[3 marks]

(b) (i)
$$\pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (x^2 - (x + 2\cos x)^2) dx$$
 A1A1A1

Note: Award A1 for $x^2 - (x + 2\cos x)^2$, A1 for correct limits and A1 for π .

(ii)
$$6\pi^2 (= 59.2)$$
 A2

Notes: Do not award **ft** from (b)(i).

[5 marks]

Total [8 marks]

sketch showing where the lines cross or zeros of
$$y = x(x+2)^6 - x$$
 (M1)
 $x = 0$ (A1)
 $x = -1$ and $x = -3$ (A1)
the solution is $-3 < x < -1$ or $x > 0$

-10-

Note: Do not award either final A1 mark if strict inequalities are not given.

METHOD 2

separating into two cases
$$x > 0$$
 and $x < 0$
if $x > 0$ then $(x+2)^6 > 1 \Rightarrow$ always true (M1)
if $x < 0$ then $(x+2)^6 < 1 \Rightarrow -3 < x < -1$
so the solution is $-3 < x < -1$ or $x > 0$

Note: Do not award either final A1 mark if strict inequalities are not given.

METHOD 3

$$f(x) = x^7 + 12x^6 + 60x^5 + 160x^4 + 240x^3 + 192x^2 + 64x$$
solutions to $x^7 + 12x^6 + 60x^5 + 160x^4 + 240x^3 + 192x^2 + 63x = 0$ are
$$x = 0, x = -1 \text{ and } x = -3$$
so the solution is $-3 < x < -1$ or $x > 0$
(A1)

Note: Do not award either final A1 mark if strict inequalities are not given.

METHOD 4

$$f(x) = x$$
 when $x(x+2)^6 = x$
either $x = 0$ or $(x+2)^6 = 1$ (A1)
if $(x+2)^6 = 1$ then $x+2=\pm 1$ so $x=-1$ or $x=-3$ (M1)(A1)
the solution is $-3 < x < -1$ or $x > 0$

Note: Do not award either final A1 mark if strict inequalities are not given.

[5 marks]

continued ...

(b) **METHOD 1** (by substitution)

substituting
$$u = x + 2$$
 (M1)
 $du = dx$

$$\int (u - 2)u^{6}du$$

$$= \frac{1}{8}u^{8} - \frac{2}{7}u^{7}(+c)$$

$$= \frac{1}{8}(x + 2)^{8} - \frac{2}{7}(x + 2)^{7}(+c)$$
A1

-11-

METHOD 2 (by parts)

$$u = x \Rightarrow \frac{du}{dx} = 1, \quad \frac{dv}{dx} = (x+2)^6 \Rightarrow v = \frac{1}{7}(x+2)^7$$

$$\int x(x+2)^6 dx = \frac{1}{7}x(x+2)^7 - \frac{1}{7}\int (x+2)^7 dx$$

$$= \frac{1}{7}x(x+2)^7 - \frac{1}{56}(x+2)^8 (+c)$$
A1A1

METHOD 3 (by expansion)

$$\int f(x) dx = \int (x^7 + 12x^6 + 60x^5 + 160x^4 + 240x^3 + 192x^2 + 64x) dx$$

$$= \frac{1}{8}x^8 + \frac{12}{7}x^7 + 10x^6 + 32x^5 + 60x^4 + 64x^3 + 32x^2 (+c) \text{ are}$$
M1A2

Note: Award M1A1 if at least four terms are correct.

[5 marks]

Total [10 marks]

 $7^3 + 2 = 345$ which is divisible by 5, hence true for n = 0

A1

Note: Award A0 for using n = 1 but do not penalize further in question.

assume true for n = k

-12-

Note: Only award the *M1* if truth is assumed.

so
$$7^{8k+3} + 2 = 5p$$
, $p \in \bullet$

if $n = k + 1$

$$7^{8(k+1)+3} + 2$$

M1

$$7^{8(k+1)+3} + 2$$

$$= 7^8 7^{8k+3} + 2$$
M1

$$= 7^8 (5p-2) + 2$$

$$=7^{8}.5p-2.7^{8}+2$$

$$=7^{8}.5 p - 11529600$$

$$=5(7^{8} p - 2305920)$$
A1

hence if true for n = k, then also true for n = k + 1. Since true for n = 0, then true for all $n \in \bullet$

[8 marks]

Note: Only award the *R1* if the first two *M1*s have been awarded.

8. (a)
$$\left(A \binom{6}{5} 2^5 B + 3 \binom{6}{4} 2^4 B^2\right) x^5$$

= $\left(192AB + 720B^2\right) x^5$ A1

[4 marks]

(b) METHOD 1

$$x = \frac{1}{6}, A = \frac{3}{6} \left(= \frac{1}{2} \right), B = \frac{4}{6} \left(= \frac{2}{3} \right)$$
probability is $\frac{4}{81}$ (= 0.0494)
A1A1A1

METHOD 2

P(5 eaten) = P(M eats 1) P(N eats 4) + P(M eats 0) P(N eats 5)
$$= \frac{1}{2} {6 \choose 4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^2 + \frac{1}{2} {6 \choose 5} \left(\frac{1}{3}\right)^5 \left(\frac{2}{3}\right)$$

$$= \frac{4}{81} (= 0.0494)$$
(A1)
(A1)

[4 marks]

Total [8 marks]

(A1)

$$P(S > 40) = 1 - P(S \le 40) = 0.513$$

A1

[2 marks]

(b) probability there were more than 10 on Monday AND more than 40 over the week probability there were more than 10 on Monday

- 14 -

M1

possibilities for the numerator are:

there were more than 40 birds on the power line on Monday

11 on Monday and more than 29 over the course of the next 6 days
12 on Monday and more than 28 over the course of the next 6 days ... until
40 on Monday and more than 0 over the course of the next 6 days
hence if X is the number on the power line on Monday and Y, the number on the power line Tuesday – Sunday then the numerator is $P(X > 40) + P(X = 11) \times P(Y > 29) + P(X = 12) \times P(Y > 28) + ...$ $+P(X = 40) \times P(Y > 0)$

$$= P(X > 40) + \sum_{r=11}^{40} P(X = r) P(Y > 40 - r)$$

hence solution is
$$\frac{P(X > 40) + \sum_{r=11}^{40} P(X = r) P(Y > 40 - r)}{P(X > 10)}$$
AG

[5 marks]

Total [7 marks]

SECTION B

10. (a)
$$x \to -\infty \Rightarrow y \to -\frac{1}{2}$$
 so $y = -\frac{1}{2}$ is an asymptote (M1)A1
 $e^x - 2 = 0 \Rightarrow x = \ln 2$ so $x = \ln 2 = 0.693$ is an asymptote (M1)A1

(M1)A1

[4 marks]

(b) (i)
$$f'(x) = \frac{2(e^x - 2)e^{2x} - (e^{2x} + 1)e^x}{(e^x - 2)^2}$$
$$= \frac{e^{3x} - 4e^{2x} - e^x}{(e^x - 2)^2}$$

(ii)
$$f'(x) = 0$$
 when $e^{3x} - 4e^{2x} - e^x = 0$
 $e^x (e^{2x} - 4e^x - 1) = 0$
 $e^x = 0, e^x = -0.236, e^x = 4.24$ (or $e^x = 2 \pm \sqrt{5}$) A1A1

Note: Award A1 for zero, A1 for other two solutions. Accept any answers which show a zero, a negative and a positive.

as $e^x > 0$ exactly one solution R1

Note: Do not award marks for purely graphical solution.

[8 marks]

(c)
$$f'(0) = -4$$
 (A1)

so gradient of normal is
$$\frac{1}{4}$$
 (M1)

$$f(0) = -2 \tag{A1}$$

so equation of
$$L_1$$
 is $y = \frac{1}{4}x - 2$

[4 marks]

continued ...

Question 10 continued

[5 marks]

Total [21 marks]

Note: Elimination of *b* could be at different stages.

 $\frac{1}{12}a + \frac{5}{2} = \mu$

 $a = 12\mu - 30$

(ii)
$$b = 1 - \frac{5}{2}(12\mu - 30)$$

= $76 - 30\mu$ A1

Note: This solution may be seen in part (i).

[7 marks]

AG

(c) (i)
$$\int_{2}^{2.3} (ax+b) dx (= 0.5)$$
 (M1)(A1)
$$\left[\frac{1}{2}ax^{2} + bx\right]_{2}^{2.3} (= 0.5)$$

$$0.645a + 0.3b (= 0.5)$$

$$0.645(12\mu - 30) + 0.3(76 - 30\mu) = 0.5$$

$$\mu = 2.34 \left(=\frac{295}{126}\right)$$
A1

continued ...

Question 11 continued

(ii)
$$E(X^2) = \int_2^3 x^2 (ax+b) dx$$
 (M1)

$$a = 12\mu - 30 = -\frac{40}{21}, \ b = 76 - 30\mu = \frac{121}{21}$$
 (A1)

$$E(X^{2}) = \int_{2}^{3} x^{2} \left(-\frac{40}{21}x + \frac{121}{21} \right) dx = 5.539... \left(= \frac{349}{63} \right)$$
 (A1)

Var
$$(X) = 5.539 \text{K} - (2.341 \text{K})^2 = 0.05813...$$
 (M1)
 $\sigma = 0.241$

[10 marks]

Total [21 marks]

12. (a) (i)
$$f(0) = -1$$

(ii)
$$(f \circ g)(0) = f(4) = 3$$

(M1)A1

(M1)A1

Note: Award *M1* for evidence that the lower part of the graph has been reflected and *A1* correct shape with *y*-intercept below 4.

[5 marks]

(M1)A1

Note: Award *M1* for any translation of y = |x|.

(ii)
$$\pm 1$$

Note: Do not award the AI if coordinates given, but do not penalise in the rest of the question

[3 marks]

Question 12 continued

(c) (i)

(M1)A1

Note: Award *M1* for evidence that lower part of (b) has been reflected in the *x*-axis and translated.

(ii) $0, \pm 2$

A1

[3 marks]

(d) (i) $\pm 1, \pm 3$

A1

(ii) $0, \pm 2, \pm 4$

A1

(iii) $0, \pm 2, \pm 4, \pm 6, \pm 8$

A1 [3 marks]

(e) (i)
$$(1, 3), (2, 5), ...$$

 $N = 2n + 1$

(M1) A1

(ii) Using the formula of the sum of an arithmetic series

(M1)

EITHER

$$4(1+2+3+...+n) = \frac{4}{2}n(n+1)$$

= $2n(n+1)$

A1

OR

$$2(2+4+6+...+2n) = \frac{2}{2}n(2n+2)$$
$$= 2n(n+1)$$

A1

[4 marks]

Total [18 marks]