

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2014

MATHEMATICS

Higher Level

Paper 1

20 pages

SECTION A

- 6 -

[2 marks]

[2 marks]

Total [4 marks]

2. (a) using the formulae for the sum and product of roots:

(i)
$$\alpha + \beta = 4$$
 A1

(ii)
$$\alpha\beta = \frac{1}{2}$$
 A1

Note: Award A0A0 if the above results are obtained by solving the original equation (except for the purpose of checking).

(b) METHOD 1

required quadratic is of the form	$x^{2} - \left(\frac{2}{\alpha} + \frac{2}{\beta}\right)x + \left(\frac{2}{\alpha}\right)\left(\frac{2}{\beta}\right)$	(M1)
4		

$$q = \frac{\alpha\beta}{\alpha\beta}$$

$$q = 8$$

$$P = -\left(\frac{2}{\alpha} + \frac{2}{\beta}\right)$$

$$= -\frac{2(\alpha + \beta)}{\alpha\beta}$$

$$M1$$

$$= -\frac{2 \times 4}{\frac{1}{2}}$$

$$p = -16$$
A1
Note: Accept the use of exact roots

Question 2 continued

METHOD 2 replacing x with $\frac{2}{x}$ M1 $2\left(\frac{2}{x}\right)^2 - 8\left(\frac{2}{x}\right) + 1 = 0$ $\frac{8}{x^2} - \frac{16}{x} + 1 = 0$ (A1) $x^2 - 16x + 8 = 0$ p = -16 and q = 8 A1A1

Note: Award A1A0 for $x^2 - 16x + 8 = 0$ ie, if p = -16 and q = 8 are not explicitly stated.

[4 marks]

Total [6 marks]

3. METHOD 1

$$\vec{OP} = \sqrt{(1+s)^2 + (3+2s)^2 + (1-s)^2} \quad (=\sqrt{6s^2 + 12s + 11})$$
 A1

- 8 -

Note: Award A1 if the square of the distance is found.

EITHER

attempt to differentiate:
$$\frac{d}{ds} \left| \overrightarrow{OP} \right|^2 (= 12s + 12)$$
 M1

attempting to solve
$$\frac{d}{ds} \left| \overrightarrow{OP} \right|^2 = 0$$
 for s (M1)

$$s = -1 \tag{A1}$$

OR

attempt to differentiate:
$$\frac{d}{ds} \left| \overrightarrow{OP} \right| = \frac{6s+6}{\sqrt{6s^2 + 12s + 11}}$$
 M1

attempting to solve
$$\frac{d}{ds} \left| \vec{OP} \right| = 0$$
 for *s* (M1)

$$s = -1 \tag{A1}$$

OR

attempt at completing the square:
$$\left(\left|\vec{OP}\right|^2 = 6(s+1)^2 + 5\right)$$
 M1

minimum value(M1)occurs at s = -1(A1)

THEN

the minimum length of \vec{OP} is $\sqrt{5}$

METHOD 2

the length of \vec{OP} is a minimum when \vec{OP} is perpendicular to $\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$ (R1)

$$\begin{pmatrix} 1+s\\3+2s\\1-s \end{pmatrix} \cdot \begin{pmatrix} 1\\2\\-1 \end{pmatrix} = 0$$
 A1

attempting to solve 1+s+6+4s-1+s=0 (6s+6=0) for s (M1)

$$\begin{vmatrix} \vec{s} &= -1 \\ |\vec{OP}| &= \sqrt{5} \end{vmatrix}$$
(A1)

Total [5 marks]

A1

4. (a) (i) use of
$$P(A \cup B) = P(A) + P(B)$$
 (M1)
 $P(A \cup B) = 0.2 + 0.5$
 $= 0.7$ A1

(ii) use of
$$P(A \cup B) = P(A) + P(B) - P(A)P(B)$$
 (M1)
 $P(A \cup B) = 0.2 + 0.5 - 0.1$
 $= 0.6$ A1

(b)
$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$

 $P(A | B)$ is a maximum when $P(A \cap B) = P(A)$
 $P(A | B)$ is a minimum when $P(A \cap B) = 0$
 $0 \le P(A | B) \le 0.4$
A1A1A1
e: A1 for each endpoint and A1 for the correct inequalities.

[3 marks]

M1

5. use of the quotient rule or the product rule

Note:

$$C'(t) = \frac{(3+t^2) \times 2 - 2t \times 2t}{(3+t^2)^2} \left(= \frac{6-2t^2}{(3+t^2)^2} \right) \text{ or } \frac{2}{3+t^2} - \frac{4t^2}{(3+t^2)^2}$$
 A1A1

Note: Award *A1* for a correct numerator and *A1* for a correct denominator in the quotient rule, and *A1* for each correct term in the product rule.

attempting to solve $C'(t) = 0$ for t	(M1)
$t = \pm \sqrt{3}$ (minutes)	A1
$C\left(\sqrt{3}\right) = \frac{\sqrt{3}}{3} (\text{mgl}^{-1}) \text{ or equivalent.}$	A1

Total [6 marks]

-9-

– 10 – N14/5/MATHL/HP1/ENG/TZ0/XX/M

A1

6.
$$\frac{du}{dx} = \frac{1}{2\sqrt{x}}$$
A1

$$\frac{dx = 2(u-1)du}{\text{Note: Award the A1 for any correct relationship between dx and du.}}$$

$$\int \frac{\sqrt{x}}{1+\sqrt{x}} dx = 2\int \frac{(u-1)^2}{u} du$$
(M1)A1
Note: Award the M1 for an attempt at substitution resulting in an integral only involving u.

$$= 2\int u - 2 + \frac{1}{u} du$$
(A1)

$$= u^2 - 4u + 2\ln u (+C)$$
A1

$$= x - 2\sqrt{x} - 3 + 2\ln(1 + \sqrt{x})(+C)$$
A1
Note: Award the A1 for a correct expression in x, but not necessarily fully expanded/simplified.

7. (a)
$$p'(3) = f'(3)g(3) + g'(3)f(3)$$
 (M1)
Note: Award M1 if the derivative is in terms of x or 3.

$$= 2 \times 4 + 3 \times 1$$

$$= 11$$
(b) $h'(x) = g'(f(x))f'(x)$
 $h'(2) = g'(1)f'(2)$

$$= 4 \times 4$$

$$= 16$$
(M1)(A1)
A1
[2 marks]
(M1)(A1)
A1
[4 marks]
Total [6 marks]

8. let P(n) be the proposition that $(2n)! \ge 2^n (n!)^2$, $n \in \mathbb{Z}^+$ consider P(1): 2! = 2 and $2^1 (1!)^2 = 2$ so P(1) is true assume P(k) is true *ie* $(2k)! \ge 2^k (k!)^2$, $k \in \mathbb{Z}^+$ *M1*

Note: Do not award *M1* for statements such as "let n = k".

consider P(k+1):

$$(2(k+1))! = (2k+2)(2k+1)(2k)!$$
 M1

$$(2(k+1))! \ge (2k+2)(2k+1)(k!)^2 2^k$$
 A1

$$= 2(k+1)(2k+1)(k!)^{2} 2^{k}$$

$$> 2^{k+1}(k+1)(k+1)(k!)^{2} \text{ since } 2k+1 > k+1$$

$$= 2^{k+1}((k+1)!)^{2}$$
A1

P(k+1) is true whenever P(k) is true and P(1) is true, so P(n) is true for $n \in \mathbb{Z}^+$ **R1**

Note: To obtain the final *R1*, four of the previous marks must have been awarded.

Total [7 marks]

- 12 -

[2 marks]

(b) **EITHER**

let q_1 be the lower quartile and let q_3 be the upper quartile let $d = 2 - q_1 (= q_3 - 2)$ and so IQR = 2d by symmetry use of area formulae to obtain $\frac{1}{2}d^2 = \frac{1}{4}$ (or equivalent) $d = \frac{1}{\sqrt{2}}$ or the value of at least one q. **MIA1 A1 OR**

let q_1 be the lower quartile

consider
$$\int_{1}^{q_{1}} (2-t) dt = \frac{1}{4}$$
M1A1
obtain $q_{1} = 2 - \frac{1}{\sqrt{2}}$
A1

THEN

$$IQR = \sqrt{2}$$
 A1

Note: Only accept this final answer for the *A1*.

[4 marks]

Total [6 marks]

10.	(a)	use of the addition principle with 3 terms	<i>(M1)</i>	
		to obtain ${}^{4}C_{3} + {}^{5}C_{3} + {}^{6}C_{3} (= 4 + 10 + 20)$	<i>A1</i>	
		number of possible selections is 34	<i>A1</i>	
			[3 m	arks]

(b) **EITHER**

recognition of three cases: (2 odd and 2 even or 1 odd and 3 even or 0 odd and 4 even) (M1) $\binom{{}^{5}C_{2} \times {}^{4}C_{2}}{} + \binom{{}^{5}C_{1} \times {}^{4}C_{3}}{} + \binom{{}^{5}C_{0} \times {}^{4}C_{4}}{} (= 60 + 20 + 1)$ (M1)A1

OR

recognition to subtract the sum of 4 odd and 3 odd and 1 even from the total

$${}^{9}C_{4} - {}^{5}C_{4} - \left({}^{5}C_{3} \times {}^{4}C_{1}\right) \ (= 126 - 5 - 40) \tag{M1}A1$$

THEN

number of possible selections is 81

A1 [4 marks] Total [7 marks]

(M1)

SECTION B

(a)	(i) $x = e^{3y+1}$	M1	
No	te: The <i>M1</i> is for switching variables and can be awarded at any stage. Further marks do not rely on this mark being awarded.		
	taking the natural logarithm of both sides and attempting to transpose	M1	
	$(f^{-1}(x)) = \frac{1}{3}(\ln x - 1)$	<i>A1</i>	
	(ii) $x \in \mathbb{R}^+$ or equivalent, for example $x > 0$.	A1	[4 marks]
(b)	$\ln x = \frac{1}{3}(\ln x - 1) \Longrightarrow \ln x - \frac{1}{3}\ln x = -\frac{1}{3} \text{ (or equivalent)}$	M1A1	
	$\ln x = -\frac{1}{2}$ (or equivalent)	A1	
	$x = e^{-\frac{1}{2}}$	A1	
	coordinates of P are $\left(e^{-\frac{1}{2}}, -\frac{1}{2}\right)$	<i>A1</i>	
			[5 marks]
(c)	coordinates of Q are (1, 0) seen anywhere	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$	M1	
	at Q, $\frac{dy}{dx} = 1$	<i>A1</i>	
	y = x - 1	AG	

[3 marks]

Question 11 continued

(d) let the required area be A

$$A = \int_{1}^{e} x - 1 dx - \int_{1}^{e} \ln x dx$$
M1

- 15 -

Note: The M1 is for a difference of integrals. Condone absence of limits here.attempting to use integration by parts to find $\ln x dx$ (M1)

$$= \left[\frac{x^{2}}{2} - x\right]_{1}^{e} - [x \ln x - x]_{1}^{e}$$
 A1A1

Note: Award A1 for $\frac{x^2}{2} - x$ and A1 for $x \ln x - x$.

Note: The second *M1* and second *A1* are independent of the first *M1* and the first *A1*.

$$=\frac{e^2}{2}-e-\frac{1}{2}\left(=\frac{e^2-2e-1}{2}\right)$$
 A1

(e) (i) METHOD 1

consider for example $h(x) = x - 1 - \ln x$

$$h(1) = 0$$
 and $h'(x) = 1 - \frac{1}{x}$ (A1)

 as $h'(x) \ge 0$ for $x \ge 1$, then $h(x) \ge 0$ for $x \ge 1$ **R1**

 as $h'(x) \le 0$ for $0 < x \le 1$, then $h(x) \ge 0$ for $0 < x \le 1$ **R1**

so
$$g(x) \le x - 1, x \in \mathbb{R}^+$$
 AG

METHOD 2

g''(x) < 0 (concave down) for $x \in \mathbb{R}^+$ **R1**the graph of y = g(x) is below its tangent (y = x - 1 at x = 1)**R1**so $g(x) \le x - 1, x \in \mathbb{R}^+$ **AG**

Note: The reasoning may be supported by drawn graphical arguments.

Question 11 continued

clear correct graphs of y = x - 1 and $\ln x$ for x > 0statement to the effect that the graph of $\ln x$ is below the graph of its tangent at x = 1*R1AG*

(ii) replacing x by
$$\frac{1}{x}$$
 to obtain $\ln\left(\frac{1}{x}\right) \le \frac{1}{x} - 1\left(=\frac{1-x}{x}\right)$ M1

- 16 -

$$-\ln x \le \frac{1}{x} - 1 \left(= \frac{1 - x}{x} \right) \tag{A1}$$

$$\ln x \ge 1 - \frac{1}{x} \left(= \frac{x - 1}{x} \right) \tag{A1}$$

so
$$\frac{x-1}{x} \le g(x), x \in \mathbb{R}^+$$
 AG

[6 marks]

Total [23 marks]

12. (a) (i)
$$\vec{AM} = \frac{1}{2}\vec{AC}$$
 (M1)

$$=\frac{1}{2}(c-a)$$
 A1

$$=\frac{1}{2}(c-a)$$
(ii) $\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM}$

$$= a - b + \frac{1}{2}(c-a)$$
A1
A1
A1
A1
A1

$$\overrightarrow{BM} = \frac{1}{2}\boldsymbol{a} - \boldsymbol{b} + \frac{1}{2}\boldsymbol{c} \qquad A\boldsymbol{G}$$

(b) (i)
$$\overrightarrow{RA} = \frac{1}{3} \overrightarrow{BA}$$

= $\frac{1}{3}(a-b)$ A1

(ii)
$$\vec{RT} = \frac{2}{3}\vec{RS}$$

= $\frac{2}{3}(\vec{RA} + \vec{AS})$ (M1)

$$= \frac{2}{3} \left(\frac{1}{3} (a - b) + \frac{2}{3} (c - a) \right) \text{ or equivalent.}$$
 A1A1
$$= \frac{2}{9} (a - b) + \frac{4}{9} (c - a)$$
 A1

$$\vec{RT} = -\frac{2}{9}a - \frac{2}{9}b + \frac{4}{9}c$$
 AG

(M1)

$$\vec{BT} = \vec{BR} + \vec{RT}$$
$$= \frac{2}{3}\vec{BA} + \vec{RT}$$

(c)

$$=\frac{2}{3}a - \frac{2}{3}b - \frac{2}{9}a - \frac{2}{9}b + \frac{4}{9}c$$
 A1

$$\vec{\mathrm{BT}} = \frac{8}{9} \left(\frac{1}{2} a - b + \frac{1}{2} c \right)$$
 A1

point B is common to \vec{BT} and \vec{BM} and $\vec{BT} = \frac{8}{9}\vec{BM}$ *R1R1* so T lies on [BM] AG

[5 marks]

Total [14 marks]

(*R1*)

13. (a) (i) METHOD 1

$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n = (1 + i \frac{\sin \theta}{\cos \theta})^n + (1 - i \frac{\sin \theta}{\cos \theta})^n \qquad M1$$

- 18 -

$$= \left(\frac{\cos\theta + i\sin\theta}{\cos\theta}\right)^n + \left(\frac{\cos\theta - i\sin\theta}{\cos\theta}\right)^n \qquad A1$$

by de Moivre's theorem (M1)

by de Moivre's theorem

$$\left(\frac{\cos\theta + i\sin\theta}{\cos\theta}\right)^n = \frac{\cos n\theta + i\sin n\theta}{\cos^n \theta}$$
 A1

recognition that $\cos \theta - i \sin \theta$ is the complex conjugate of $\cos\theta + i\sin\theta$ use of the fact that the operation of complex conjugation commutes with the operation of raising to an integer power:

$$\left(\frac{\cos\theta - i\sin\theta}{\cos\theta}\right)^n = \frac{\cos n\theta - i\sin n\theta}{\cos^n \theta}$$
 A1

$$(1 + i \tan \theta)^{n} + (1 - i \tan \theta)^{n} = \frac{2 \cos n\theta}{\cos^{n} \theta}$$
 AG

METHOD 2

$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n = (1 + i \tan \theta)^n + (1 + i \tan (-\theta))^n$$
(M1)

$$=\frac{(\cos\theta + i\sin\theta)^n}{\cos^n\theta} + \frac{(\cos(-\theta) + i\sin(-\theta))^n}{\cos^n\theta} \qquad M1A1$$

Note: Award M1 for converting to cosine and sine terms.

use of de Moivre's theorem (M1)

$$=\frac{1}{\cos^{n}\theta}\left(\cos n\theta + i\sin n\theta + \cos(-n\theta) + i\sin(-n\theta)\right)$$
 A1

$$=\frac{2\cos n\theta}{\cos^n \theta} \text{ as } \cos(-n\theta) = \cos n\theta \text{ and } \sin(-n\theta) = -\sin n\theta \qquad \mathbf{R}\mathbf{I}\mathbf{A}\mathbf{G}$$

Question 13 continued

(ii)
$$\left(1 + i \tan \frac{3\pi}{8}\right)^4 + \left(1 - i \tan \frac{3\pi}{8}\right)^4 = \frac{2\cos\left(4 \times \frac{3\pi}{8}\right)}{\cos^4 \frac{3\pi}{8}}$$
 (A1)

- 19 -

$$=\frac{2\cos\frac{3\pi}{2}}{\cos^4\frac{3\pi}{2}}$$
 A1

Note: The above working could involve theta and the solution of $cos(4\theta) = 0$. so $i tan \frac{3\pi}{8}$ is a root of the equation AG

(iii) either
$$-i \tan \frac{3\pi}{8}$$
 or $-i \tan \frac{\pi}{8}$ or $i \tan \frac{\pi}{8}$ A1

Note: Accept i
$$\tan \frac{5\pi}{8}$$
 or $i \tan \frac{7\pi}{8}$.
Accept $-(1+\sqrt{2})i$ or $(1-\sqrt{2})i$ or $(-1+\sqrt{2})i$.

[10 marks]

(b) (i)
$$\tan \frac{\pi}{4} = \frac{2 \tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}}$$
 (M1)

$$\tan^2 \frac{\pi}{8} + 2\tan \frac{\pi}{8} - 1 = 0$$
A1
let $t = \tan \frac{\pi}{8}$

The term
$$t = tan \frac{1}{8}$$

attempting to solve $t^2 + 2t - 1 = 0$ for t
 $t = -1 \pm \sqrt{2}$
M1
A1

$$\frac{\pi}{8}$$
 is a first quadrant angle and tan is positive in this quadrant, so

$$\tan\frac{\pi}{8} = \sqrt{2} - 1 \qquad AG$$

Question 13 continued

$$(ii) \quad \cos 4x = 2\cos^2 2x - 1 \qquad \qquad A1$$

$$=2(2\cos^2 x - 1)^2 - 1$$
 M1

$$= 2(4\cos^4 x - 4\cos^2 x + 1) - 1$$
 A1

$$=8\cos^4 x - 8\cos^2 x + 1 \qquad AG$$

Note: Accept equivalent complex number derivation.

(iii)
$$\int_{0}^{\frac{\pi}{8}} \frac{2\cos 4x}{\cos^{2} x} dx = 2 \int_{0}^{\frac{\pi}{8}} \frac{8\cos^{4} x - 8\cos^{2} x + 1}{\cos^{2} x} dx$$
$$= 2 \int_{0}^{\frac{\pi}{8}} 8\cos^{2} x - 8 + \sec^{2} x dx$$
M1

Note: The *M1* is for an integrand involving no fractions.

use of
$$\cos^2 x = \frac{1}{2}(\cos 2x + 1)$$
 M1

$$=2\int_{0}^{\frac{\pi}{8}}4\cos 2x - 4 + \sec^{2}x \, dx \qquad A1$$

$$= [4\sin 2x - 8x + 2\tan x]_0^{\frac{\pi}{8}}$$
 A1

$$=4\sqrt{2}-\pi-2$$
 (or equivalent) A1

[13 marks]

Total [23 marks]