

Markscheme

May 2015

Mathematics

Higher level

Paper 1

22 pages

Section A

1. (a) METHOD 1		
area = $\pi 2^2 - \frac{1}{2} 2^2 \theta (= 3\pi)$	τ) Μ1Α1	
Note: Award M1 for using a	irea formula.	
$\Rightarrow 2\theta = \pi \Rightarrow \theta = \frac{\pi}{2}$	A1	
Note: Degrees loses final A	1	
METHOD 2		
let $x = 2\pi - \theta$		
area $=\frac{1}{2}2^2x(=3\pi)$	M1	
$\Rightarrow x = \frac{3}{2}\pi$	A1	
$\Rightarrow \theta = \frac{\pi}{2}$	A1	
METHOD 3		
Area of circle is 4π	A1	
Shaded area is $\frac{3}{4}$ of the	e circle (R1)	
$\Rightarrow \theta = \frac{\pi}{2}$	A1	
		[3 marks]
(b) arc length $=2\frac{3\pi}{2}$	A1	
perimeter = $2\frac{3\pi}{2} + 2 \times 2$		
$=3\pi+4$	A1	[2 marks]
	Tota	l [5 marks]

2. (a)
$$\overline{x} = \frac{1 \times 0 + 19 \times 10}{20} = 9.5$$
 (M1)A1
[2 marks]
(b) median is 10
(c) (i) 19
(ii) 1
(ii) 1
(c) (j) 19
(ii) 1
(c) (j) 19
(j) 12

M1A1

A1

(M1)A1

(M1)

A1

A1

Note: Allow integration by parts followed by trig identity. Award *M1* for parts, *A1* for trig identity, *A1* final answer.

[3 marks]

Total [5 marks]

4. (a)
$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

(b) $\int \sin^2 x \, \mathrm{d}x = \int \frac{1 - \cos 2x}{2} \, \mathrm{d}x$

 $=\frac{x}{2}-\frac{\sin 2x}{4}(+c)$

[2 marks]

(b)
$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$
$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$
$$= \lim_{h \to 0} \left(3x^2 + 3xh + h^2\right)$$
$$= 3x^2$$

Note: Do not award final A1 on FT if $= 3x^2$ is not obtained

Note: Final A1 can only be obtained if previous A1 is given

[3 marks]

Total [5 marks]

5. (a) EITHER

$$f(-x) = f(x)$$

$$\Rightarrow ax^{2} - bx + c = ax^{2} + bx + c \Rightarrow 2bx = 0, (\forall x \in \mathbb{R})$$
A1

-9-

OR

y-axis is eqn of symmetry M1 so $\frac{-b}{2a} = 0$ A1

THEN

$$\Rightarrow b = 0$$
 AG [2 marks]

(b)
$$g(-x) = -g(x) \Rightarrow p \sin(-x) - qx + r = -p \sin x - qx - r$$

 $\Rightarrow -p \sin x - qx + r = -p \sin x - qx - r$

Note: *M1* is for knowing properties of sin.

$$\Rightarrow 2r = 0 \Rightarrow r = 0$$

Note: In (a) and (b) allow substitution of a particular value of x

(c)
$$h(-x) = h(x) = -h(x) \Longrightarrow 2h(x) = 0 \Longrightarrow h(x) = 0, (\forall x)$$

Note: Accept geometrical explanations.

[2 marks]

[2 marks]

Total [6 marks]

М1

A1

M1A1

- 10 -

(a)
$$f: x \to y = \frac{3x-2}{2x-1} \quad f^{-1}: y \to x$$
$$y = \frac{3x-2}{2x-1} \Rightarrow 3x-2 = 2xy-y$$
$$\Rightarrow 3x-2xy = -y+2$$
M1

$$x(3-2y) = 2-y$$

$$x = \frac{2-y}{3-2y}$$
A1

$$(f^{-1}(y) = \frac{2 - y}{3 - 2y})$$

$$f^{-1}(x) = \frac{2 - x}{3 - 2x} \qquad \left(x \neq \frac{3}{2}\right)$$
A1

Note: *x* and *y* might be interchanged earlier.

Note: First *M1* is for interchange of variables second *M1* for manipulation

Note: Final answer must be a function of *x*

(b)
$$\frac{3x-2}{2x-1} = A + \frac{B}{2x-1} \Longrightarrow 3x-2 = A(2x-1) + B$$

equating coefficients $3 = 2A$ and $-2 = -A + B$ (M1)
 $A = \frac{3}{2}$ and $B = -\frac{1}{2}$ A1

Note: Could also be done by division or substitution of values.

(c)
$$\int f(x) dx = \frac{3}{2}x - \frac{1}{4}\ln|2x-1| + c$$

Note: accept equivalent e.g. In |4x-2|

A1

[2 marks]

[1 mark]

Total [7 marks]

[4 marks]

A1

– 11 –

7. (a) (i)
$$\left(-\frac{a_{n-1}}{a_n}\right) - \frac{1}{2}$$

(ii)
$$\left((-1)^n \frac{a_0}{a_n} = \right) - \frac{36}{2} = (-18)$$
 A1A1

Note: First *A1* is for the negative sign.

[3 marks]

(b) METHOD 1

if λ satisfies $p(\lambda) = 0$ then $q(\lambda - 4) = 0$	
so the roots of $q(x)$ are each 4 less than the roots of $p(x)$	(R1)
so sum of roots is $-\frac{1}{2}-4\times5=-20.5$	A1

METHOD 2

$p(x+4) = 2x^5 + 2 \times 5 \times 4x^4 \dots + x^4 \dots = 2x^5 + 41x^4 \dots$	(M1)
so sum of roots is $-\frac{41}{2} = -20.5$	A1

[2 marks]

Total [5 marks]

$$8. \qquad \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x \tag{A1}$$

EITHER

integral is
$$\int \frac{e^x}{\left(e^x + 3\right)^2 + 2^2} dx$$

$$= \int \frac{1}{u^2 + 2^2} du$$
M1A1
M1A1

Note: Award *M1* only if the integral has completely changed to one in u.

Note: d*u* needed for final **A1**

OR

$$e^{x} = u - 3$$

integral is $\int \frac{1}{(u-3)^{2} + 6(u-3) + 13} du$ M1A1

Note: Award *M1* only if the integral has completely changed to one in u.

Note: In both solutions the two method marks are independent.

THEN

$$= \frac{1}{2} \arctan\left(\frac{u}{2}\right)(+c)$$

$$= \frac{1}{2} \arctan\left(\frac{e^{x}+3}{2}\right)(+c)$$
A1

Total [7 marks]

М1

AG

A1

(a)
$$g \circ f(x) = g(f(x))$$

= $g\left(2x + \frac{\pi}{5}\right)$
= $3\sin\left(2x + \frac{\pi}{5}\right) + 4$

[1 mark]

(b) since
$$-1 \le \sin \theta \le +1$$
, range is $[1, 7]$ (R1)A1
[2 marks]

– 13 –

(c)
$$3\sin\left(2x+\frac{\pi}{5}\right)+4=7 \Rightarrow 2x+\frac{\pi}{5}=\frac{\pi}{2}+2n\pi \Rightarrow x=\frac{3\pi}{20}+n\pi$$
 (M1)

so next biggest value is
$$\frac{23\pi}{20}$$

Note: Allow use of period.

[2 marks]

(d)	Note: Transformations can be in any order but see notes	below.	
	stretch scale factor 3 parallel to y axis (vertically) vertical translation of 4 up		
Note	e: Vertical translation is $\frac{4}{3}$ up if it occurs before stretch parallel to <i>y</i> axis.		
	stretch scale factor $\frac{1}{2}$ parallel to <i>x</i> axis (horizontally)	A1	
	horizontal translation of $\frac{\pi}{10}$ to the left	A1	
Note	e: Horizontal translation is $\frac{\pi}{5}$ to the left if it occurs before stretch parallel to <i>x</i> axis.		
Note	 Award A1 for magnitude and direction in each case. Accept any correct terminology provided that the meaning is clear eg shift for translation. 		

[4 marks]

Total [9 marks]

10. **METHOD 1**

to have 3 consecutive losses there must be exactly 5, 4 or 3 losses the probability of exactly 5 losses (must be 3 consecutive) is $\left(\frac{1}{3}\right)^{-1}$

the probability of exactly 4 losses (with 3 consecutive) is $4\left(\frac{1}{3}\right)^4\left(\frac{2}{3}\right)^4$

Note: First A1 is for the factor 4 and second A1 for the other 2 factors.

the probability of exactly 3 losses (with 3 consecutive) is $3\left(\frac{1}{3}\right)^3\left(\frac{2}{3}\right)^2$

Note: First A1 is for the factor 3 and second A1 for the other 2 factors.

(Since the events are mutually exclusive)

the total probability is
$$\frac{1+8+12}{3^5} = \frac{21}{243} \left(= \frac{7}{81} \right)$$
 A1
[6 marks]

METHOD 2

Roy loses his job if

A - first 3 games are all lost (so the last 2 games can be any result) B – first 3 games are not all lost, but middle 3 games are all lost (so the first game is not a loss and the last game can be any result)

or C - first 3 games are not all lost, middle 3 games are not all lost but last 3 games are all lost, (so the first game can be any result but the second game is not a loss)

for A 4th & 5th games can be anything

$$P(A) = \left(\frac{1}{3}\right)^3 = \frac{1}{27}$$
 A1

for B 1st game not a loss & 5th game can be anything

$$P(B) = \frac{2}{3} \times \left(\frac{1}{3}\right)^3 = \frac{2}{81}$$
 A1

for C 1st game anything, 2nd game not a loss

$$P(C) = 1 \times \frac{2}{3} \times \left(\frac{1}{3}\right)^3 = \frac{2}{81}$$
 A1

(Since the events are mutually exclusive)

total probability is $\frac{1}{27} + \frac{2}{81} + \frac{2}{81} = \frac{7}{81}$ A1

(R1)

(R1)

A1

A1A1

A1A1

Question 10 continued.

Note:	In both methods all the A marks are independent.
Note:	If the candidate misunderstands the question and thinks that it is asking for exactly 3 losses award A1 A1 and A1 for an answer of $\frac{12}{243}$ as in the last lines of Method 1.

[6 marks]

Total [6 marks]

Section B

11. (a)
$$\frac{dy}{dx} = 1 \times e^{3x} + x \times 3e^{3x} = (e^{3x} + 3xe^{3x})$$
 M1A1
[2 marks]

(b) let
$$P(n)$$
 be the statement $\frac{d^n y}{dx^n} = n3^{n-1}e^{3x} + x3^n e^{3x}$
prove for $n = 1$ M1
LHS of $P(1)$ is $\frac{dy}{dx}$ which is $1 \times e^{3x} + x \times 3e^{3x}$ and RHS is $3^0 e^{3x} + x3^1 e^{3x}$ R1
as LHS = RHS, $P(1)$ is true
assume $P(k)$ is true and attempt to prove $P(k+1)$ is true M1
assuming $\frac{d^k y}{dx^k} = k3^{k-1}e^{3x} + x3^k e^{3x}$
 $\frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx}\left(\frac{d^k y}{dx^k}\right)$ (M1)
 $= k3^{k-1} \times 3e^{3x} + 1 \times 3^k e^{3x} + x3^k \times 3e^{3x}$ A1
 $= (k+1)3^k e^{3x} + x3^{k+1}e^{3x}$ (as required) A1
Note: Can award the A marks independent of the M marks
since $P(1)$ is true and $P(k)$ is true $\Rightarrow P(k+1)$ is true
then (by PMI), $P(n)$ is true $(\forall n \in \mathbb{Z}^+)$ R1

Note: To gain last *R1* at least four of the above marks must have been gained.

[7 marks]

continued...

M1A1

[5 marks]

Question 11 continued

(c)
$$e^{3x} + x \times 3e^{3x} = 0 \Rightarrow 1 + 3x = 0 \Rightarrow x = -\frac{1}{3}$$
 M1A1
point is $\left(-\frac{1}{3}, -\frac{1}{3e}\right)$ A1

EITHER

$$\frac{d^2y}{dx^2} = 2 \times 3e^{3x} + x \times 3^2 e^{3x}$$

when $x = -\frac{1}{3}$, $\frac{d^2y}{dx^2} > 0$ therefore the point is a minimum **M1A1**

OR

x	$-\frac{1}{3}$		
$\frac{\mathrm{d}y}{\mathrm{d}x}$	-ve 0 +ve		
	مالجما متندما ماطمه		

nature table shows point is a minimum

(d)
$$\frac{d^2 y}{dx^2} = 2 \times 3e^{3x} + x \times 3^2 e^{3x}$$
 A1

$$2 \times 3e^{3x} + x \times 3^2 e^{3x} = 0 \Longrightarrow 2 + 3x = 0 \Longrightarrow x = -\frac{2}{3}$$
 M1A1

point is
$$\left(-\frac{2}{3}, -\frac{2}{3e^2}\right)$$
 A1

$$\begin{array}{c|c} x & -\frac{2}{3} \\ \hline \frac{d^2 y}{dx^2} & -ve & 0 & +ve \end{array}$$
Since the curvature does change (concave down to concave up) it is a point of inflection R1

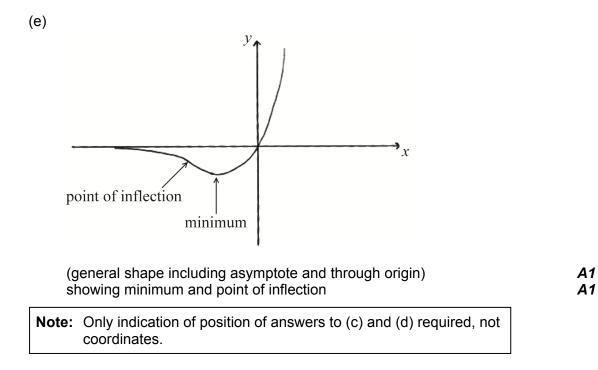
point of inflection

Note: Allow 3rd derivative is not zero at
$$-\frac{2}{3}$$

[5 marks]

continued...

Question 11 continued



[2 marks]

Total [21 marks]

12. (a) (i) METHOD 1

$$\frac{v_{n+1}}{v_n} = \frac{2^{u_{n+1}}}{2^{u_n}}$$

$$= 2^{u_{n+1}-u_n} = 2^d$$
A1

METHOD 2

$$\frac{v_{n+1}}{v_n} = \frac{2^{a+nd}}{2^{a+(n-1)d}}$$
 M1

$$=2^d$$
 A1

(ii) 2^{a}

A1

Note: Accept 2^{u_1} .

(iii) **EITHER**

 v_n is a GP with first term 2^a and common ratio 2^d $v_n = 2^a (2^d)^{(n-1)}$

OR

 $u_n = a + (n-1)d$ as it is an AP

THEN

$$v_n = 2^{a + (n-1)d}$$
 A1

[4 marks]

(b) (i)
$$S_n = \frac{2^a ((2^d)^n - 1)}{2^d - 1} = \frac{2^a (2^{dn} - 1)}{2^d - 1}$$
 M1A1
Note: Accept either expression.

(ii) for sum to infinity to exist need $-1 < 2^d < 1$ **R1**

$$\Rightarrow \log 2^{d} < 0 \Rightarrow d \log 2 < 0 \Rightarrow d < 0$$
 (M1)A1

Note: Also allow graph of 2^d .

(iii)
$$S_{\infty} = \frac{2^a}{1-2^d}$$
 A1

continued...

– 19 –

Question 12 continued

(iv)
$$\frac{2^{a}}{1-2^{d}} = 2^{a+1} \Rightarrow \frac{1}{1-2^{d}} = 2$$

$$\Rightarrow 1 = 2 - 2^{d+1} \Rightarrow 2^{d+1} = 1$$

$$\Rightarrow d = -1$$
A1
[8 marks]

(c) METHOD 1

$$w_n = pq^{n-1}, \ z_n = \ln pq^{n-1}$$
 (A1)
 $z_n = \ln p + (n-1) \ln q$ M1A1

 $z_{n+1} - z_n = (\ln p + n \ln q) - (\ln p + (n-1) \ln q) = \ln q$ which is a constant so this is an AP (with first term $\ln p$ and common difference $\ln q$)

$$\sum_{i=1}^{n} z_{i} = \frac{n}{2} \left(2\ln p + (n-1)\ln q \right)$$
 M1

$$= n \left(\ln p + \ln q^{\left(\frac{n-1}{2}\right)} \right) = n \ln \left(p q^{\left(\frac{n-1}{2}\right)} \right)$$
(M1)

$$=\ln\left(p^n q^{\frac{n(n+1)}{2}}\right)$$
 A1

METHOD 2

$$\sum_{i=1}^{n} z_{i} = \ln p + \ln pq + \ln pq^{2} + \dots + \ln pq^{n-1}$$
(M1)A1
= $\ln \left(p^{n} q^{(1+2+3+\dots+(n-1))} \right)$
(M1)A1

$$= \ln \left(p^{n} q^{-2} \right)$$
 (M1)A1

[6 marks]

Total [18 marks]

13. (a)
$$\vec{OP} = i + 2j + 3k + \lambda(i + j + k)$$

$$\vec{OQ} = 2i + j - k + \mu(i - j + 2k)$$

$$\vec{PQ} = \vec{OQ} - \vec{OP}$$

$$\vec{PQ} = i - j - 4k - \lambda(i + j + k) + \mu(i - j + 2k)$$
(M1)

$$= (1 - \lambda + \mu)i + (-1 - \lambda - \mu)j + (-4 - \lambda + 2\mu)k$$
[2 marks]

(b) METHOD 1

use of scalar product	М1
perpendicular to $i + j + k$ gives	
$(1 - \lambda + \mu) + (-1 - \lambda - \mu) + (-4 - \lambda + 2\mu) = 0$	
$\Rightarrow -3\lambda + 2\mu = 4$	A1
perpendicular to $i - j + 2k$ gives	
$(1 - \lambda + \mu) - (-1 - \lambda - \mu) + 2(-4 - \lambda + 2\mu) = 0$	
$\Rightarrow -2\lambda + 6\mu = 6$	A1
solving simultaneous equations gives $\lambda = -\frac{6}{7}$, $\mu = \frac{5}{7}$	A1A1
$\gamma + \gamma$	

METHOD 2

$\mathbf{v} \times \mathbf{w} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k}$	M1A1
$\overrightarrow{PQ} = a(3i - j - 2k)$	
$1 - \lambda + \mu = 3a$	
$-1 - \lambda - \mu = -a$	A1
$-4 - \lambda + 2\mu = -2a$	

solving simultaneous equations gives $\lambda = -\frac{6}{7}$, $\mu = \frac{5}{7}$ A1A1

[5 marks]

[3 marks]

(c)
$$\vec{PQ} = \frac{18}{7}i - \frac{6}{7}j - \frac{12}{7}k$$
 A1

shortest distance =	$ \overrightarrow{PQ} $	$=\frac{6}{7}\sqrt{3^2 + (-1)^2 + (-2)^2} = \frac{6}{7}\sqrt{14}$	M1A1
---------------------	--------------------------	---	------

(d) METHOD 1

vector perpendicular to Π is given by vector product of v and w	(R1)
$\mathbf{v} \times \mathbf{w} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k}$	(M1)A1
so equation of Π is $3x - y - 2z + d = 0$	
through $(1, 2, 3) \Longrightarrow d = 5$	M1
so equation is $3x - y - 2z + 5 = 0$	A1

continued...

Question 13 continued

METHOD 2

from part (b)
$$\overrightarrow{PQ} = \frac{18}{7}i - \frac{6}{7}j - \frac{12}{7}k$$
 is a vector perpendicular to Π **R1A2**
so equation of Π is $\frac{18}{7}x - \frac{6}{7}y - \frac{12}{7}z + c = 0$
through $(1, 2, 3) \Rightarrow c = \frac{30}{7}$ **M1**

so equation is $\frac{18}{7}x - \frac{6}{7}y - \frac{12}{7}z + \frac{30}{7} = 0$ (3x - y - 2z + 5 = 0) A1

Note: Allow other methods ie via vector parametric equation.

[5 marks]

(e)
$$\overrightarrow{OT} = 2i + j - k + \eta (3i - j - 2k)$$

 $T = (2 + 3\eta, 1 - \eta, -1 - 2\eta)$ lies on Π implies
 $3(2 + 3\eta) - (1 - \eta) - 2(-1 - 2\eta) + 5 = 0$
 $\Rightarrow 12 + 14\eta = 0 \Rightarrow \eta = -\frac{6}{7}$
A1

Note: If no marks awarded in (d) but correct vector product calculated in (e) award M1A1 in (d).

[2 marks]

(f)
$$\left| \overrightarrow{BT} \right| = \frac{6}{7}\sqrt{3^2 + (-1)^2 + (-2)^2} = \frac{6}{7}\sqrt{14}$$

1

[2 marks]

M1A1

A1

they agree (g)

Note: FT is inappropriate here.

 $\stackrel{~}{\mathrm{BT}}$ is perpendicular to both \varPi and l_2 so its length is the shortest distance between Π and l_2 which is the shortest distance between l_1 and l_2

R1

[2 marks]

Total [21 marks]