

Markscheme

November 2015

Mathematics

Higher level

Paper 1

17 pages

Section A

-7-

1.
$$\operatorname{arc}\operatorname{length} = \frac{2}{x} = rx\left(\Rightarrow r = \frac{2}{x^2}\right)$$

 $16 = \frac{1}{2}\left(\frac{2}{x^2}\right)^2 x\left(\Rightarrow \frac{2}{x^3} = 16\right)$
M1
Note: Award M1s for attempts at the use of arc-length and sector-area formulae.
 $x = \frac{1}{2}$
 $\operatorname{arc}\operatorname{length} = 4(\operatorname{cm})$
A1

2. attempt to integrate one factor and differentiate the other, leading to a sum of two terms $\int x \sin x \, dx = x(-\cos x) + \int \cos x \, dx$ $= -x \cos x + \sin x + c$ A1

Note: Only award final **A1** if +c is seen.

3. (a) $(2+x)^4 = 2^4 + 4 \cdot 2^3 x + 6 \cdot 2^2 x^2 + 4 \cdot 2x^3 + x^4$ Note: Award *M1* for an expansion, by whatever method, giving five terms in any order. $= 16 + 32x + 24x^2 + 8x^3 + x^4$ Note: Award *M1A1A0* for correct expansion not given in ascending powers of x.

[3 marks](b) let
$$x = 0.1$$
 (in the binomial expansion)(M1) $2.1^4 = 16 + 3.2 + 0.24 + 0.008 + 0.0001$ (A1) $= 19.4481$ A1

Note: At most one of the marks can be implied.

[3 marks]

Total [6 marks]

4. (a)
$$\frac{dy}{dx} = (1-x)^{-2} \left(= \frac{1}{(1-x)^2} \right)$$

(M1)A1

[2 marks]

continued...

[4 marks]

Question 4 continued

		[4 marks
	8x + 2y - 23 = 0	A1
	$y + \frac{1}{2} = -4(x-3)$ or attempt to find c in $y = mx + c$	М1
	gradient of Normal $= -4$	(M1)
(b)	gradient of Tangent $=\frac{1}{4}$	(A1)

5. METHOD 1

$$\int_{e}^{e^{2}} \frac{dx}{x \ln x} = \left[\ln (\ln x) \right]_{e}^{e^{2}}$$
(M1)A1

$$= \ln \left(\ln e^{2} \right) - \ln (\ln e) \ (= \ln 2 - \ln 1)$$
(A1)

$$= \ln 2$$
A1

$$u = \ln x, \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$$
 M1

$$=\int_{1}^{2}\frac{\mathrm{d}u}{u}$$
 A1

$$= \left[\ln u \right]_{1}^{2} \text{ or equivalent in } x (= \ln 2 - \ln 1)$$

$$= \ln 2$$
(A1)
(A1)
(A1)

[4 marks]

[4 marks]

Total [6 marks]

6. (a) probability that Darren wins P(W) + P(RRW) + P(RRRW) (M1)

Note: Only award *M1* if three terms are seen or are implied by the following numerical equivalent.

 Note: Accept equivalent tree diagram for method mark.

 $= \frac{2}{6} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \cdot \frac{2}{2}$ $\left(= \frac{1}{3} + \frac{1}{5} + \frac{1}{15} \right)$ A2

 Note: A1 for two correct.
 $= \frac{3}{5}$ A1

[4 marks] continued...

Question 6 continued

(b) METHOD 1

the probability that Darren wins is given by
$$P(W) + P(RRW) + P(RRRW) + ...$$

(M1)

Note: Accept equivalent tree diagram with correctly indicated path for me	ethod mark.
P (Darren Win) = $\frac{1}{3} + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \dots$	
or $=\frac{1}{3}\left(1+\frac{4}{9}+\left(\frac{4}{9}\right)^2+\right)$	A1
$=\frac{1}{3}\left(\frac{1}{1-\frac{4}{9}}\right)$	A1
$=\frac{3}{5}$	AG

[3 marks]

METHOD 2

P(Darren wins) = P

$\mathbf{P} = \frac{1}{3} + \frac{4}{9}\mathbf{P}$	M1A2
$\frac{5}{9} P = \frac{1}{3}$	
$P = \frac{3}{5}$	AG
5	[3 marks]

Total [7 marks]

7.	(a)	$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1	
		a horizontal tangent occurs if $\frac{dy}{dx} = 0$ so $y = 0$	М1	
		we can see from the equation of the curve that this solution is not possible $(0 = 4)$ and so there is not a horizontal tangent	R1	[4 marks]

Question 7 continued

(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{2y - x}$ or equivalent with $\frac{\mathrm{d}x}{\mathrm{d}y}$	
	the tangent is vertical when $2y = x$	М1
	substitute into the equation to give $2y^2 = y^2 + 4$	М1
	$y = \pm 2$	A1
	coordinates are $(4, 2), (-4, -2)$	A1
		[4 marks]

Total [8 marks]

8. (a) $\sin\left(\theta + \frac{\pi}{2}\right) = \sin\theta\cos\frac{\pi}{2} + \cos\theta\sin\frac{\pi}{2}$ M1 = $\cos\theta$ AG

Note: Accept a transformation/graphical based approach.

[1 mark]

(b) consider
$$n = 1$$
, $f'(x) = a \cos(ax)$ M1

since
$$\sin\left(ax + \frac{\pi}{2}\right) = \cos ax$$
 then the proposition is true for $n = 1$ **R1**

assume that the proposition is true for n = k so $f^{(k)}(x) = a^k \sin\left(ax + \frac{k\pi}{2}\right)$ **M1**

$$f^{(k+1)}(x) = \frac{d(f^{(k)}(x))}{dx} \left(= a\left(a^k \cos\left(ax + \frac{k\pi}{2}\right)\right) \right)$$
 M1

$$= a^{k+1} \sin\left(ax + \frac{k\pi}{2} + \frac{\pi}{2}\right) \text{ (using part (a))}$$
 A1

$$=a^{k+1}\sin\left(ax+\frac{(k+1)\pi}{2}\right)$$

given that the proposition is true for n = k then we have shown that the proposition is true for n = k + 1. Since we have shown that the proposition is true for n = 1 then the proposition is true for all $n \in \mathbb{Z}^+$

Note: Award final R1 only if all prior M and R marks have been awarded.

[7 marks]

Total [8 marks]

R1

9. $(\sin 2x - \sin x) - (\cos 2x - \cos x) = 1$ attempt to use both double-angle formulae, in whatever form ($2\sin x \cos x - \sin x$) - $(2\cos^2 x - 1 - \cos x) = 1$ or $(2\sin x \cos x - \sin x) - (2\cos^2 x - \cos x) = 0$ for example A1 Note: Allow any rearrangement of the above equations. $\sin x (2\cos x - 1) - \cos x (2\cos x - 1) = 0$ (M1) $\tan x = 1$ and $\cos x = \frac{1}{2}$ A1A1

Note: These A marks are dependent on the M mark awarded for factorisation.

$$x = -\frac{3\pi}{4}, -\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{4}$$

Note: Award **A1** for two correct answers, which could be for both tan or both cos solutions, for example.

10. (a) the sum of the roots of the polynomial
$$=\frac{63}{16}$$
 (A1)

$$2\left(\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}\right) = \frac{63}{16}$$

M1A1

Note: The formula for the sum of a geometric sequence must be equated to a value for the *M1* to be awarded.

$$1 - \left(\frac{1}{2}\right)^n = \frac{63}{64} \Longrightarrow \left(\frac{1}{2}\right)^n = \frac{1}{64}$$
$$n = 6$$

A1

[4 marks]

(b)
$$\frac{a_0}{a_n} = 2 \times 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times \frac{1}{16}, (a_n = 16)$$

 $a_0 = 16 \times 2 \times 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times \frac{1}{16}$
 $a_0 = 2^{-5} \left(= \frac{1}{32} \right)$
A1

[2 marks]

Total [6 marks]

– 12 –

Section B

11. (a)
$$z^3 = 8\left(\cos\left(\frac{\pi}{2} + 2\pi k\right) + i\sin\left(\frac{\pi}{2} + 2\pi k\right)\right)$$
 (A1)
attempt the use of De Moivre's Theorem in reverse M1

$$z = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right); 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right);$$

$$2\left(\cos\left(\frac{9\pi}{6}\right) + i\sin\left(\frac{9\pi}{6}\right)\right)$$
A2

Note: Accept cis form.
$$z = \pm \sqrt{3} + i_{1} - 2i$$

[6 marks]

A2

(b) (i)
$$z_1 = \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right)$$
 A1A1

(ii)
$$(z_2 = (\sqrt{3} + i))$$

 $z_1 z_2 = (1 + i)(\sqrt{3} + i)$
 $= (\sqrt{3} - 1) + i(1 + \sqrt{3})$
A1

(iii)
$$z_1 z_2 = 2\sqrt{2} \left(\cos\left(\frac{\pi}{6} + \frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{6} + \frac{\pi}{4}\right) \right)$$
 M1A1

$$\tan\frac{5\pi}{12} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$$

$$= 2 + \sqrt{3}$$
 M1A1

Note: Award final *M1* for an attempt to rationalise the fraction.

(iv)
$$z_2^{\ p} = 2^p \left(\operatorname{cis}\left(\frac{p\pi}{6}\right) \right)$$
 (M1)

 z_2^{p} is a positive real number when p = 12 **A1**

[11 marks]

Total [17 marks]

12. (a)
$$f(-x) = (-x)\sqrt{1 - (-x)^2}$$
 M1
= $-x\sqrt{1 - x^2}$
= $-f(x)$ R1
hence f is odd AG

[2 marks]

(b)
$$f'(x) = x \cdot \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} - 2x + (1 - x^2)^{\frac{1}{2}}$$
 M1A1A1
[3 marks]

(c)
$$f'(x) = \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} \left(= \frac{1 - 2x^2}{\sqrt{1 - x^2}} \right)$$
 A1

Note: This may be seen in part (b).

$$f'(x) = 0 \Longrightarrow 1 - 2x^2 = 0$$
 M1

$$x = \pm \frac{1}{\sqrt{2}}$$

[3 marks]

(d) y-coordinates of the Max Min Points are
$$y = \pm \frac{1}{2}$$
 M1A1
so range of $f(x)$ is $\begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix}$ A1

Note: Allow FT from (c) if values of *x*, within the domain, are used.

[3 marks]

Question 12 continued

Shape: The graph of an odd function, on the given domain, s-shaped,
where the max(min) is the right(left) of 0.5(-0.5)A1
A1
A1
turning pointsx-intercepts
turning pointsA1
[3 marks]

(f)	area = $\int_0^1 x \sqrt{1 - x^2} \mathrm{d}x$	(M1)
	attempt at "backwards chain rule" or substitution	M1
	$= -\frac{1}{2} \int_0^1 (-2x) \sqrt{1 - x^2} \mathrm{d}x$	

$$= \left[\frac{2}{3}\left(1 - x^{2}\right)^{\frac{3}{2}} - \frac{1}{2}\right]_{0}^{1}$$
A1

$$= \left[-\frac{1}{3} (1 - x^2)^{\frac{1}{2}} \right]_{0}$$

= $0 - \left(-\frac{1}{3} \right) = \frac{1}{3}$ A1

[4 marks]

(g)
$$\int_{-1}^{1} \left| x \sqrt{1 - x^2} \right| dx > 0$$
 R1

$$\left|\int_{-1}^{1} x \sqrt{1 - x^2} \, \mathrm{d}x\right| = 0$$
 R1

so
$$\int_{-1}^{1} \left| x \sqrt{1 - x^2} \right| dx > \left| \int_{-1}^{1} x \sqrt{1 - x^2} dx \right| = 0$$

[2 marks]

Total [20 marks]

AG

13. (a)
$$\vec{BR} = \vec{BA} + \vec{AR} \ (= \vec{BA} + \frac{1}{2}\vec{AC})$$
 (M1)
 $= (a - b) + \frac{1}{2}(c - a)$
 $= \frac{1}{2}a - b + \frac{1}{2}c$ A1
[2 marks]

(b) (i)
$$r_{BR} = b + \lambda \left(\frac{1}{2}a - b + \frac{1}{2}c\right) \left(=\frac{\lambda}{2}a + (1 - \lambda)b + \frac{\lambda}{2}c\right)$$
 A1A1

Note: Award A1A0 if the r = is omitted in an otherwise correct expression/equation.

(ii)
$$\vec{AQ} = -a + \frac{1}{2}b + \frac{1}{2}c$$
 (A1)

$$r_{AQ} = a + \mu \left(-a + \frac{1}{2}b + \frac{1}{2}c \right) \left(= (1 - \mu)a + \frac{\mu}{2}b + \frac{\mu}{2}c \right)$$
 A1

(iii) when \overrightarrow{AQ} and \overrightarrow{BP} intersect we will have $r_{BR} = r_{AQ}$ (M1)

$$\frac{\lambda}{2}a + (1 - \lambda)b + \frac{\lambda}{2}c = (1 - \mu)a + \frac{\mu}{2}b + \frac{\mu}{2}c$$
attempt to equate the coefficients of the vectors *a*, *b* and *c*
(11)

$$\frac{\lambda}{2} = 1 - \mu$$

$$1 - \lambda = \frac{\mu}{2}$$

$$\frac{\lambda}{2} = \frac{\mu}{2}$$

$$\lambda = \frac{2}{3} \text{ or } \mu = \frac{2}{3}$$
A1

substituting parameters back into one of the equations M1 $\overrightarrow{OG} = \frac{1}{2} \cdot \frac{2}{3}a + \left(1 - \frac{2}{3}\right)b + \frac{1}{2} \cdot \frac{2}{3}c = \frac{1}{3}(a + b + c)$ AG

[9 marks]

Question 13 continued

(c)
$$\vec{CP} = \frac{1}{2}a + \frac{1}{2}b - c$$
 (M1)A1
so we have that $r_{CP} = c + \beta \left(\frac{1}{2}a + \frac{1}{2}b - c\right)$ and when $\beta = \frac{2}{3}$ the line
passes through
the point G (*ie*, with position vector $\frac{1}{3}(a + b + c)$) R1
hence [AQ], [BR] and [CP] all intersect in G AG
[3 marks]

Question 13 continued

(d)
$$\vec{OG} = \frac{1}{3} \left(\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 7 \\ -5 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$$
 A1

Note: This independent mark for the vector may be awarded wherever the vector is calculated.

$$\vec{AB} \times \vec{AC} = \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ -6 \end{pmatrix}$$

$$M1A1$$

$$\vec{GX} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
(M1)

volume of Tetrahedron given by $\frac{1}{3} \times \text{Area ABC} \times \text{GX}$ = $\frac{1}{3} \left(\frac{1}{2} \middle| \vec{AB} \times \vec{AC} \middle| \right) \times \text{GX} = 12$ (M1)(A1)

Note: Accept alternative methods, for example the use of a scalar triple product.

$$= \frac{1}{6}\sqrt{(-6)^{2} + (-6)^{2} + (-6)^{2}} \times \sqrt{\alpha^{2} + \alpha^{2} + \alpha^{2}} = 12$$

$$= \frac{1}{6}6\sqrt{3} |\alpha| \sqrt{3} = 12$$

$$\Rightarrow |\alpha| = 4$$
A1

Note: Condone absence of absolute value.

this gives us the position of X as $\begin{vmatrix} 4 \\ \pm \end{vmatrix} 4$

X(6, 8, 3) or (-2, 0, -5)

Note: Award A1 for either result.

[9 marks]

Total [23 marks]

A1