

Markscheme

November 2015

Mathematics

Higher level

Paper 2

20 pages

Section A

1.	(a)	$0.818 = 0.65 + 0.48 - P(A \cap B)$	(M1)
		$P(A \cap B) = 0.312$	A1
			[2 marks]

(b)	$P(A) P(B) = 0.312 (= 0.48 \times 0.65)$	A1
	since $P(A) P(B) = P(A \cap B)$ then A and B are independent	R1

Note: Only award the R1 if numerical values are seen. Award A1R1 for a correct conditional probability approach.

[2 marks]

Total [4 marks]

(M1)

2. using technology and/or by elimination (eg ref on GDC) (M1)

$$x = 1.89 \left(= \frac{17}{9} \right), y = 1.67 \left(= \frac{5}{3} \right), z = -2.22 \left(= \frac{-20}{9} \right)$$
 A1A1A1
[4 marks]
3. (a) $\frac{0 \cdot 4 + 1 \cdot k + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 3 + 8 \cdot 1}{13 + k} = 1.95 \left(\frac{k + 32}{k + 13} = 1.95 \right)$ (M1)
attempting to solve for k (M1)
 $k = 7$ [3 marks]
(b) (i) $\frac{7 + 32 + 22}{7 + 13 + 1} = 2.90 \left(= \frac{61}{21} \right)$ (M1)A1
(ii) standard deviation = 4.66 A1
Note: Award A0 for 4.77.

[3 marks]

Total [6 marks]

A1

4. (a) (i) A = -3

(ii) period
$$= \frac{2\pi}{B}$$
 (M1)
 $B = 2$ A1

Note: Award as above for A = 3 and B = -2.

(iii)
$$C = 2$$
 A1

(b)
$$x = 1.74, 2.97 \left(x = \frac{1}{2} \left(\pi + \arcsin \frac{1}{3} \right), \frac{1}{2} \left(2\pi - \arcsin \frac{1}{3} \right) \right)$$
 (M1)

Note: Award *(M1)A0* if extra correct solutions eg(-1.40, -0.170) are given outside the domain $0 \le x \le \pi$.

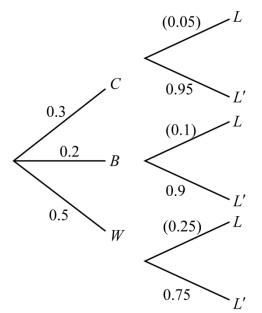
Total [6 marks]

5. (a) (i)
$$\operatorname{area} = \int_{2}^{4} \sqrt{y - 2} \, dy$$
 M1A1
(ii) $= 1.886 \ (4 \text{ sf only})$ [3 marks]
(b) $\operatorname{volume} = \pi \int_{2}^{4} (y - 2) \, dy$ (M1)
 $= \pi \left[\frac{y^{2}}{2} - 2y \right]_{2}^{4}$ (A1)
 $= 2\pi \ (\operatorname{exact only})$ A1
[3 marks]
Total [6 marks]

11)A1

[2 marks]

6. EITHER



M1A1A1

Note: Award *M1* for a two-level tree diagram, *A1* for correct first level probabilities, and *A1* for correct second level probabilities.

OR

$$P(B | L') = \frac{P(L' | B) P(B)}{P(L' | B) P(B) + P(L' | C) P(C) + P(L' | W) P(W)} \left(= \frac{P(B \cap L')}{P(L')} \right) (M1)(A1)(A1)$$

THEN

$$P(B | L') = \frac{0.9 \times 0.2}{0.9 \times 0.2 + 0.95 \times 0.3 + 0.75 \times 0.5} \left(=\frac{0.18}{0.84}\right)$$

$$= 0.214 \left(=\frac{3}{14}\right)$$
A1

[6 marks]

7.
$$21 = \frac{1}{2} \cdot 6 \cdot 11 \cdot \sin A$$
 (M1)
 $\sin A = \frac{7}{11}$ (A1)

– 10 –

$$\hat{A} = 0.6897..., 2.452... \left(\hat{A} = \arcsin \frac{7}{11}, \pi - \arcsin \frac{7}{11} = 39.521...^{\circ}, 140.478...^{\circ} \right)$$
 (A1)

OR

$$\cos A = \pm \frac{6\sqrt{2}}{11} (=\pm 0.771...) \tag{A1}$$

THEN

$$BC^{2} = 6^{2} + 11^{2} - 2 \cdot 6 \cdot 11 \cos A$$
(M1)
BC = 16.1 or 7.43 A1A1

Note: Award *M1A1A0M1A1A0* if only one correct solution is given.

[6 marks]

8. (a)
$$A \int_{1}^{5} \sin(\ln x) dx = 1$$
 (M1)
 $A = 0.323$ (3 dp only) A1

[2 marks]

(b) either a graphical approach or
$$f'(x) = \frac{\cos(\ln x)}{x} = 0$$
 (M1)

$$x = 4.81 \left(= e^{\frac{\pi}{2}} \right)$$
 A1

Note: Do not award **A1FT** for a candidate working in degrees.

[2 marks]

(c)
$$P(X \le 3 | X \ge 2) = \frac{P(2 \le X \le 3)}{P(X \ge 2)} \left(= \frac{\int_{2}^{3} \sin(\ln(x)) dx}{\int_{2}^{5} \sin(\ln(x)) dx} \right)$$
 (M1)
= 0.288 A1

Note: Do not award A1FT for a candidate working in degrees.

[2 marks]

Total [6 marks]

9. (a)
$$t_1 = 1.77(s) (= \sqrt{\pi}(s))$$
 and $t_2 = 2.51(s) (= \sqrt{2\pi}(s))$ A1A1 [2 marks]

(b) (i) attempting to find (graphically or analytically) the first t_{max} (M1) $t = 1.25(s) \left(= \sqrt{\frac{\pi}{2}}(s) \right)$ A1

$$t = 1.25(s) \left(=\sqrt{\frac{\pi}{2}(s)}\right)$$

(ii) attempting to find (graphically or analytically) the first t_{\min} (M1)

$$t = 2.17(s) \left(=\sqrt{\frac{3\pi}{2}}(s)\right)$$
 A1

[4 marks]

(c) distance travelled =
$$\left| \int_{1.772...}^{2.506...} 1 - e^{-\sin t^2} dt \right|$$
 (or equivalent) (M1)
= 0.711(m) A1

[2 marks]

Total [8 marks]

10. (a)
$$a = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$
 (5)

$$\boldsymbol{b} = \frac{1}{3} \begin{pmatrix} 4\\16 \end{pmatrix} - \begin{pmatrix} -1\\4 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \frac{5}{3}\\4 \end{pmatrix}$$
(M1)A1

– 12 –

[3 marks]

(b) METHOD 1

Roderick must signal in a direction vector perpendicular to Ed's path. (M1)

the equation of the signal is
$$s = \begin{pmatrix} 11 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} -12 \\ 5 \end{pmatrix}$$
 (or equivalent) A1

$$\binom{-1}{4} + \frac{t}{3}\binom{5}{12} = \binom{11}{9} + \lambda\binom{-12}{5}$$
M1

$$\frac{5}{3}t + 12\lambda = 12 \text{ and } 4t - 5\lambda = 5$$
 M1

$$t = 2.13 \left(= \frac{360}{169} \right)$$
 A1

METHOD 2

$$\binom{5}{12} \cdot \left(\binom{11}{9} - \binom{-1 + \frac{5}{3}t}{4 + 4t} \right) = 0 \text{ (or equivalent)}$$
 M1

Note: Award the *M1* for an attempt at a scalar product equated to zero, *A1* for the first factor and *A1* for the complete second factor.

attempting to solve for t

$$t = 2.13 \left(=\frac{360}{169}\right) \tag{A1}$$

[5 marks]

continued...

A1A1

(M1)

[5 marks]

Question 10 continued

METHOD 3

$$x = \sqrt{\left(12 - \frac{5t}{3}\right)^2 + \left(5 - 4t\right)^2} \quad \text{(or equivalent)} \left(x^2 = \left(12 - \frac{5t}{3}\right)^2 + \left(5 - 4t\right)^2\right) \quad \textbf{M1A1A1}$$

Note: Award **M1** for use of Pythagoras' theorem, **A1** for $\left(12 - \frac{5t}{3}\right)^2$ and **A1**
for $\left(5 - 4t\right)^2$.

attempting (graphically or analytically) to find *t* such that
$$\frac{dx}{dt} = 0 \left(\frac{d(x^2)}{dt} = 0 \right)$$
 (M1)

$$t = 2.13 \left(= \frac{360}{169} \right)$$
 A1

METHOD 4

$$\cos\theta = \frac{\begin{pmatrix} 12\\5 \end{pmatrix} \cdot \begin{pmatrix} 5\\12 \end{pmatrix}}{\begin{vmatrix} 12\\5 \end{pmatrix} \begin{vmatrix} 5\\12 \end{vmatrix}} = \frac{120}{169}$$

M1A1

Note: Award *M1* for attempting to calculate the scalar product.

$$\frac{120}{13} = \frac{t}{3} \begin{vmatrix} 5\\12 \end{vmatrix} \text{ (or equivalent)}$$

$$(A1)$$

$$attempting to solve for t$$

$$t = 2.13 \left(= \frac{360}{169} \right)$$

$$A1$$

[5 marks]

Total [8 marks]

Section B

11.	(a)	(i)	let W be the weight of a worker and $W \sim \mathrm{N}ig(\mu,\sigma^2ig)$		
			$P\left(Z < \frac{62-\mu}{\sigma}\right) = 0.3 \text{ and } P\left(Z < \frac{98-\mu}{\sigma}\right) = 0.75$	(M1)	
			$\frac{62 - \mu}{\sigma} = \Phi^{-1}(0.3) (= -0.524) \text{ and}$ $\frac{98 - \mu}{\sigma} = \Phi^{-1}(0.75) (= 0.674)$		
			$\frac{98-\mu}{\sigma} = \Phi^{-1}(0.75) (= 0.674)$		
			σ or linear equivalents	A1A1	
		(ii)	attempting to solve simultaneously $\mu = 77.7, \sigma = 30.0$	(M1) A1A1	
					[6 marks]
	(b)	P(W	V > 100) = 0.229	A1	
					[1 mark]
	(c)		X represent the number of workers over $100\mathrm{kg}$ in a lift of ten sengers		
		•	- B(10, 0.229)	(M1)	
		P(X	$1 \ge 4) = 0.178$	A1	

continued...

Question 11 continued

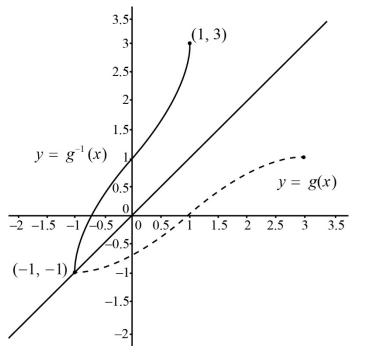
(d)	$P(X < 4 X \ge 1) = \frac{P(1 \le X \le 3)}{P(X \ge 1)}$	M1(A1)	
Not	e: Award the <i>M1</i> for a clear indication of conditional probability.		
	= 0.808	A1 [3 mark	s]
(e)	$L \sim Po(50)$ P(L > 60) = 1 - P(L ≤ 60) = 0.0722	(M1) (M1) A1 [3 mark	s]
(f)	400 workers require at least 40 elevators $P(L \ge 40) = 1 - P(L \le 39)$ = 0.935	(A1) (M1) A1 [3 mark	s]
		Total [18 mark	s]

	Note: For Q12(a) (i) – (iii) and (b) (ii), award A1 for correct endpoints and , if correct, award A1 for a closed interval. Further, award A1A0 for one correct endpoint and a closed interval.		
12.	(a)	(i) $-4 \le y \le -2$	A1A1
		(ii) $-5 \le y \le -1$	A1A1
		(iii) $-3 \le 2x - 6 \le 5$	(M1)
		Note: Award M1 for $f(2x-6)$.	
		$3 \le 2x \le 11$	
		$\frac{3}{2} \le x \le \frac{11}{2}$	A1A1

[7 marks] continued...

Question 12 continued

- (b) (i) any valid argument eg f is not one to one, f is many to one, fails horizontal line test, not injective **R1**
 - (ii) largest domain for the function g(x) to have an inverse is [-1, 3] **A1A1**
 - (iii)



y-intercept indicated (coordinates not required)	A1
correct shape	A1
coordinates of end points $(1, 3)$ and $(-1, -1)$	A1

Note: Do not award any of the above marks for a graph that is not one to one.

[6 marks] continued...

Question 12 continued

(c) (i)
$$y = \frac{2x-5}{x+d}$$

 $(x+d) y = 2x-5$ M1
Note: Award M1 for attempting to rearrange x and y in a linear
expression.
 $x(y-2) = -dy-5$ (A1)
 $x = \frac{-dy-5}{y-2}$ (A1)
Note: x and y can be interchanged at any stage
 $h^{-1}(x) = \frac{-dx-5}{x-2}$ A1
Note: Award A1 only if $h^{-1}(x)$ is seen.
(ii) self Inverse $\Rightarrow h(x) = h^{-1}(x)$
 $\frac{2x-5}{x+d} = \frac{-dx-5}{x-2}$ (M1)
 $d = -2$ A1
(iii) METHOD 1
 $\frac{2k(x)-5}{k(x)-2} = \frac{2x}{x+1}$ (M1)
 $k(x) = \frac{x+5}{2}$ A1
METHOD 2
 $h^{-1}\left(\frac{2x}{x+1}\right) = \frac{2\left(\frac{2x}{x+1}\right)-5}{\frac{2x}{x+1}-2}$ (M1)

$$k(x) = \frac{x+5}{2}$$
 A1

[8 marks]

Total [21 marks]

13. (a)
$$f'(x) = 30e^{-\frac{x^2}{400}} \cdot -\frac{2x}{400} \left(= -\frac{3x}{20}e^{-\frac{x^2}{400}} \right)$$
 M1A1

Note: Award *M1* for attempting to use the chain rule.

$$f''(x) = -\frac{3}{20}e^{-\frac{x^2}{400}} + \frac{3x^2}{4000}e^{-\frac{x^2}{400}} \left(= \frac{3}{20}e^{-\frac{x^2}{400}} \left(\frac{x^2}{200} - 1\right) \right)$$
 M1A1

Note: Award *M1* for attempting to use the product rule.

[4 marks]

(b) the roof function has maximum gradient when
$$f''(x) = 0$$
 (M1)
Note: Award (M1) for attempting to find $f''(-\sqrt{200})$.
EITHER
= 0 A1

OR

 $f''(x) = 0 \Longrightarrow x = \pm \sqrt{200}$

THEN

valid argument for maximum such as reference to an appropriate graph or change in the sign of f''(x) eg f''(-15) = 0.010...(>0) and f''(-14) = -0.001...(<0)

$$\Rightarrow x = -\sqrt{200}$$
 AG

[3 marks]

R1

continued...

Question 13 continued

(c)
$$A = 2a \cdot 30e^{-\frac{a^2}{400}} \left(= 60ae^{-\frac{a^2}{400}} = -400f'(a) \right)$$
 (M1)(A1)

EITHER

$$\frac{\mathrm{d}A}{\mathrm{d}a} = 60a\mathrm{e}^{-\frac{a^2}{400}} \cdot -\frac{a}{200} + 60\mathrm{e}^{-\frac{a^2}{400}} = 0 \Rightarrow a = \sqrt{200} \quad \left(-400\,f''(a) = 0 \Rightarrow a = \sqrt{200}\right)$$
M1A1

OR

by symmetry eg $a = -\sqrt{200}$ found in (b) or A_{max} coincides with f''(a) = 0 **R1** $\Rightarrow a = \sqrt{200}$ **A1**

THEN

$$A_{\rm max} = 60 \cdot \sqrt{200} e^{-\frac{200}{400}}$$
 M1

$$= 600\sqrt{2}e^{-2}$$
 AG [5 marks]

(d) (i) perimeter =
$$4a + 60e^{-\frac{a^2}{400}}$$
 A1A1

Note: Condone use of x.
(ii)
$$I(a) = \frac{4a + 60e^{-\frac{a^2}{400}}}{a^2}$$

)
$$I(a) = \frac{4a + 60e^{-400}}{60ae^{-\frac{a^2}{400}}}$$
 (A1)

graphing I(a) or other valid method to find the minimum (M1) a = 12.6 A1

(iii) area under roof
$$= \int_{-20}^{20} 30e^{-\frac{x^2}{400}} dx$$
 M1
= 896.18... (A1)

area of living space =
$$60 \cdot (12.6...) \cdot e^{-\frac{(12.6...)^2}{400}} = 508.56...$$
 (A1)

percentage of empty space = 43.3% **A1**

[9 marks]

Total [21 marks]