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Set Theory: Exploring the Unique Properties of the Cantor Set

B: Do they have to be

1. Introduction /" Imathematical?
In mathematics, sets are a collection of mathematical objects where the set itself is
also considered a mathematical object. Sets are one of the most fundamental
concepts primitive to mathematics as they cannot be defined in more “simpler”
terms. Hence to understand the importance of sets, we can use a common thought
experiment that highlights how we came to the realisation of an important notion;
that quantity is abstract. If we date back to prehistoric times we may intuitively think
that we were able to count two sheep and two apples and see that both have
something in common — a duality known today as “2”. However, in order to be able

to quantify a collection of sheep or apples, we must first be able to determine that
there is a “collection” to quantify in the first place. Hence it is entirely possible to
believe that the concept of a collection is as — if not more — fundamental as the
concept of counting.

A: The introduction is a
little long but acceptable
as a new realm of
mathematics is being
explored. The aim is
very explicitly stated.

So, then comes the question, what are sets? What kind of properties do they have?
We have postulated numerous axioms from our understandings of collections in the
real world and finite collections, an example being the Zermelo-Fraenkel set theory
(ZF; one of the most commonly used that consists of axioms such as the Axiom of
Union which states that a union of sets exists. | will not delve deeply into the axioms
of set theory, as that is worth another entire math exploration!). It is, however, the
infinite collections that | find to be of most interest. My first encounter with infinite
sets was in the form of a TED-ED video, where they described how Hilbert’s Paradox
of the Grand Hotel worked (something that | explore in the next page). When | had
first watched it a while back, it took me some time to wrap my mind around the fact
that different sizes of infinity could exist. Remembering that video, | was inspired to
work with set theory, particularly in regards to infinity and cardinality and the
countability of sets. While | will be exploring sets, | have chosen specifically to
explore the Cantor set (named after Georg Cantor, a revolutionary mathematician
known for his studies in the sizes of infinity) due to the unique properties that it
possesses. In my exploration, | will be constructing the ternary Cantor Set before
proving why it is 1) uncountable and 2) non-empty but with zero length.

2. Cardinality
To understand the properties of the cantor set, we must first understand some of
the properties of set theory. Hence we must first establish an understanding in
cardinality. In simple terms, the cardinality of a finite set X is a natural number
(called the set’s cardinal number) used to measure the number of elements present
in that set, and it is usually denoted by a modulus®. An example where X is a set of
even natural numbers in the interval ]1, 10]:

X =1{2,4,6,8,10}

! There are other forms of denoting cardinality, such as “#” however for consistency | will only be using
the modulus.
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The set X is shown to have a cardinal number of 5, as it has five elements. The
cardinality of a set goes hand in hand with the countability of sets, as in order to
quantify the number of elements in a set, we must be able to count them. This is
where the interesting part of sets arises, as we must then ask ourselves, are all sets
countable? We can easily say that finite sets are countable as being finite implies
that it has a finite number of elements?, which can be nhumbered through from 1to n
where n is the cardinal number of that set. Set X above is a finite set. However, it is
the countability of the infinite sets that are the question. This is where Hilbert’s
Paradox of the Grand Hotel (a.k.a Hilbert’s Hotel) comes in play.

Hilbert’s Hotel is a thought experiment that shows the counterintuitive properties of
sets, as it demonstrates how a fully occupied hotel consisting of infinitely many
rooms can accommodate more guests — infinitely more guests — and this process can
be repeated an infinite amount of times. For example, if an additional guest wanted
a room in the fully occupied hotel, we can simultaneously move the guest in Room 1,
to Room 2, the guest in Room 2 to Room 3, and the guest in Room nton + 1, hence

making Room 1 free. Similarly, if an infinitely long bus with an infinite amount of
passengers wanted accommodation in the hotel with the infinite amount of rooms,
the guest in Room 1 can be moved to Room 2, the guest in Room 2 to Room 4 and
the guest in Room n to Room 2n. By doing so, the infinite guests that were already
in the hotel will occupy the infinite even numbered rooms, leaving the infinite
amount of odd numbered rooms to the infinite bus passengers that had just arrived

Gr::‘s):-nin goes to —— P:‘isniggrer goes to Eos
1 —— 2 T — 1
2 —— 4 2 — 3
3 — . 5 _’ 3 —— 5
4 — . g 4 —— 7
5 ——10 5 —— 9
n —— on n ———2n-1

Image source: http://mathandmultimedia.com/2014/05/26/grand-hotel-paradox/

If we take this one step further and say that there are now an infinite number of
buses with an infinite number of passengers each, then there is a solution to that as
well. This time, we deal with prime numbers, as we assign the guest in Room 1 to

2 An empty set (denoted as {} or @) is also considered a finite set as it has the cardinal number of 0,
which in this context (as well as in this course) is considered a natural number.

A: Very well explained in
words
B: The graphic

enhances the
~

explanation but there
should be ellipses after
the last line as we are
dealing with infinite sets.
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Not clearly explained
but the table helps.

Room 2, and then every guest thereafter to Room 2%. Then, every bus with their
infinite number of passengers can be assigned to the next prime number, and their
exponents, as seen in the next table.

-

Passenger Number or Room Number

Room
Assignments

Hotel Guest

Bus 1

Bus 2

Bus 3

Bus 4

Image source: http://mathandmultimedia.com/2014/05/26/grand-hote|-paradox/

A very interesting notion that | had missed while | did my initial research was that
Hilbert based his above solution on the assumption that there are an infinite number
of prime numbers (otherwise his solution would not work). However, | found in the
IB Discrete Maths' option book that this assumption can be easily proved using a
proof by contradiction, attributed to Greek mathematician Euclid:

If we suppose there are finitely many prime numbers p;, p2, P, -.., Pk, it means that
every integer greater than 1 will either be a prime number or be divisible by a prime
number. Now let P be a common multiple of these primes plus 1; P =

P1P2D3 - Pr + 1. We can see that P is greater than the prime numbers p, hence it
cannot be any of those prime numbers. Furthermore, since P is not a prime number

B: Table should not
stop at n but should
have another column

and also a final row with
ellipses.

with ellipses in each row

B: It would have been
better if the proof were
laid out mathematically

P cannot be divided by each pj, as it would provide a remainder of 1 which does\?

work. Therefore the assumption that there are finitely many prime numbers is
incorrect, which means that therf:: Wh{ct:-pz;?aaox? 1y prime numbers.

In short, this paradox illustrates the unique properties of infinity as it shows that
there can be different sizes of infinity. Understanding this notion leads to the
question of whether all infinite sets are countable. Within mathematics there is a
general consensus that if the cardinality of some infinite set A is less than or equal to
the cardinality of natural numbers it is then considered countably infinite. The
cardinality of natural numbers is assignhed (by Georg Cantor) and is (today) accepted
to be the aleph-null (a.k.a aleph-naught) X,. This means that there must either be a

E: How does it do so?
IThe infinities in the
lexamples above all

have the same size.
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bijection — a one-to-one correspondence?® between the two sets — or an injection (a
one-to-one function) only from function f from A to the natural numbers. A simple

example is the set of all even natural numbers, E:

Surjection ‘[

Bijection

Injection

E: A good example but
the concept is not well
explained
mathematically.

Y

X Y X
G'

If nis an element in the set of natural numbers, we can see that f:N — E as f(n) =
2nand fTLE > Nasfi(n) = ; Through the functions we can see that there is a

one-to-one correspondence. This means that the functions are bijective, which
implies that the set of even natural numbers are countably infinite, and more

Not rigorous proof of a
bijection.

importantly, its cardinality is equal to aleph-null; |E| = |[N| = R,. This feels very
counterintuitive, as clearly there must be more even numbers than natural numbers,
and thus the cardinality of E should be more? However, if we think about it, through
the functions we can see that distinct natural numbers get mapped to distinct even
numbers, hence their cardinalities are the same.

Now the cardinality of the infinite set of even natural numbers is quite simple to
understand, which is why | used it as an example so that understanding the
cardinality — and thus the uncountability — of the Cantor set will be made easier. In
the following section of this exploration, | will first construct the Cantor set, before
using proofs to show that it is uncountable and has zero length.

B: What does zero
length mean in this
context?

Cantor Set Construction
The Cantor set has a variety of different constructions and representations, however
the most well-known example (which ironically Cantor only mentioned fleetingly as

an example in his work) is the ternary set construction. The Cantor set is iterative
(repeating a process) with the set in actuality being the intersection of all the

iterations. How? We start by letting C, = [0,1]. We then remove the open middle
: " i 1 2 1S
third from the interval C, to get the set ;. This gives us C; = [0, ;] U [5, 1]. Then to

B: No reference is made

to the interval being

within the real numbers.

get C, we remove the open middle thirds from each of the two segments within C;
togetC, = [0,%] v Eﬂ U Eg] U [g, 1]. In general, C, is constructed from C,_;
through removing the open middle thirds of any interval in C,,_;. Thus, we construct
a sequence of sets:

(26262206,

3 To avoid confusion, keep in mind that one-to-one correspondence implies a bijection, whereas simply
being called one-to-one implies an injection.

N
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3.1Proof: The Cantor set is uncountable L~ |the same size.

AN

Such that C,, is a union of 2™ disjoint closed intervals, i.e. we start with 2° = 1 as the
first line segment is continuous within the interval of [0,1] without any middle third
removed, then in each iteration the number of intervals is doubled as each one is
split into two parts, a third to each side. (Although some mathematicians and
textbooks' use the subset symbol 2 | have chosen to use the proper subset symbol,
as we can clearly see that C; is a proper subset of €, and C, of €; and so forth, since
each subset is less than the preceding one as seen in the diagram below). Hence
from the above, we can define the Cantor set C as the following:

E: The notation and this

=] \concept need more
c-Na
n=0

explanation.

n
We can also conclude that each interval will have a length of (é) . This will be

relevant later on when | show that the Cantor set has zero length. Here is an image
representation of the Cantor set for clarity:

1

1/3

1/9

Source: http://1.bp.blogspot.com/-09-Pvwi83 8/VOaqgy40sLBI/AAAAAAAAAFD/2UVPO9vwfMg/s1600/Triadic Cantor Set.png

E: The sets in Hilbert's
hotel example all have

We have seen with Hilbert’s Hotel paradox how there are different sizes of infinity,
and that the paradox has exemplified properties such as: 0o+ 1 = o and oo + o0 =
oo and so on. We also saw that the set of infinite even natural numbers was
countable, as its cardinality is equal to aleph-null, the cardinality of the natural
numbers. Most importantly, we understood that a cardinality larger than aleph-null
implies an uncountable infinite set, which brings us to our next step. A well-known
example of an uncountable infinite set is the set of real numbers R, whose
cardinality is higher than aleph-null. Thus, if we demonstrate a surjective (page 4
figure) function from the Cantor set to the set of real numbers between 0 and 1,
f:C — [0,1] we can show that |C| = |[0,1]] i.e. the cardinality of the Cantor set will
be larger than or equal to the set of real numbers from 0 to 1. However, since C €
[0,1], its cardinality is also less than or equal to the cardinality of [0,1] which means
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E: Well explained in

/ words

that essentially the two sets have equal cardinality. Through this we can show that
the Cantor set is uncountable.

In order to do so, we will need to work in a ternary system. Similar to the binary
system where numbers are written using just the digits 0 and 1 or the decimal
system with digits 0 to 9, the ternary system only uses three digits; 0, 1 and 2 (also
known as base 3 notation). This means that every number will have a numerical

B: Should also have

representation using only 0, 1 and/or 2. For example, the number 45, (base 10, .~ |peen set out

standard number system) will be 1200,. How do we do this? Well if we imagine
columns, where the column headings (from right to left) would be powers of 3, i.e. 1,
3,9, 27,... then we look at the largest power of three that is less than 45. In this case
itis 27, and 45 goes into 27 once, so we write 1 in the 27 column. 45 — 27 = 18 now
the largest power less than 18 is 9, and 9 can go into 18 twice, so we write 2 under
the 9 column. 18 — 18 = 0, so in the remaining columns we simply write 0. So, our
result is that 45,5 = 12005 (remember it’s from right to left).

This same concept can be applied to the numbers between 0 and 1, except this time

the column headings will be % ,% ,% etc. So, % can be written as 0.1, and g as0.2. In
our Cantor set, let x € [0,1] in ternary notation, so that it can be expressed as

follows:

mathematically.

E: Needs to be
< |explained more fully

=Y 2 wh = 0,12
x= ﬁwerean—{,,}
n=1

n
Hence: x = (0.a,a,a; ... ); and for example, 1 = ¥, ( g) = (O.sz

In €y, our first middle third that is removed contains only base 3 numbers of the

D: Missed opportunity
to reflect on the fact
that this is an infinite
geometric series, and
similarly in base 10
1=0.9999...

form 0.1xxx... and 0.21xxx... where xxx... can only be numbers 000... and/or 222....
So, if this first middle third has been removed, the ternary numbers that remain are
in the form of 0.0xxx... or 0.2xxx... where the numbers thereafter, x, can be any of
the ternary digits. The second iteration is similar as it removes numbers in the form
of 0.01xxx... and 0.21xxx... leaving base 3 numbers where the first two digits a,
and a, cannot be 1. As we can see, this pattern will continue with every iteration
such that if n goes to infinity, a,, will never be equal to 1, and will only consist of the
digits 0 and 2:

f(x) =f(0.a,a5a5..) ={n €EN|a, = 2}

\ D: Not clearly explained.

Thus we can make a surjection from the Cantor set to the real numbers, as all we
have to do is map every 2 in any digit in the Cantor set to a 1. So, e.g. 0.202 will be
0.101, which means that we can get the full set of numbers in binary form in the
interval [0,1]. This means that there is a surjection from the Cantor set to every real
number in the interval [0,1]. And as explained earlier, the real numbers are
uncountable which means that the Cantor set is therefore uncountable as well.

N

‘3 Mathematics: analysis and approaches and mathematics: applications and interpretation



Example 9: The Cantor set—annotated student work

AN

3.2 Proof: The Cantor is a nonempty set with length 0
This is one of the very fascinating properties of the Cantor set, as despite the Cantor
set being uncountable, it has a length of {} or 0. To understand this counterintuitive
property, if we think back to the image representation of the Cantor set on page 5,
we can see that although line segments are being removed, the endpoints remain.
So, each trisection of C, to form C,,, leaves two endpoints. We’ve established
earlier (page 4) that the Cantor set is the infinite intersection of each C,,, so C
contains the endpoints of each subinterval and therefore is nonempty. The
fascinating part arises, when it can be proved that although the set is nonempty, it
has 0 length.

As before, we let n equal the iterative step, where n = 0 is [0,1] without the middle

n
third removed, we know from earlier that the length of each removal is ( i) and we

can understand that the number of intervals as n goes to infinity is 2! we can
make a geometric series to find out the total length removed:

B: Notational error

i(Z“‘l) * (3™ = (1 * %) + (2 * é) + - [umSLiJTt?prig:trion.
n=1w . N
= Y@@ (5)=2(3)(3)
n=1 n=1
3 _6_

(-3 (3

Due to this unique property, some mathematicians and textbooks call the Cantor set
a nonempty null set. This essentially means that the Cantor set is “null” in the sense
that it has no length, however since the endpoints still remain after the line
segments have been removed, it is therefore non-empty as there are elements that
are still within the set.

4. Conclusion
Despite this exploration being successful in its proofs, there are limitations that need
to be considered. The most significant limitation is that | did not consider set theory
— and thus by extension the Cantor Set— in relation to different systems of axiomatic
set theory. Thus | cannot be sure that these proofs — although general — work within
every axiomatic set theory like the briefly mentioned Zermelo-Fraenkel set theory.
This exploration would then have been far more accurate and reliable, if it had been
tested in the different systems of axiomatic set theory.

Essentially, set theory is a huge area of mathematics and encompasses far more than
what | have explored here, however through my research with the properties of the
Cantor set | believe | have come to a better appreciation of its implications in
mathematics. In the introduction, | mentioned how sets and the concept of
collections is perhaps more fundamental than counting itself, and through this
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exploration | believe | truly came to understand just how fundamental they are.
Some of the most basic concepts in mathematics, like functions which we learn in
school, relies on sets. Functions such as f(x) = 4x are rules that essentially map
numbers to other numbers. However simply saying “rules” is far too vague, and
instead more formally we would say that a function is a relation between two or
more sets where there is an input and an output. To take it even further, a function
maps numbers to numbers however a simple algebraic structure consists of a set
together with one or more binary operations. This is perhaps most important as the
power of modern algebra lies in its ability to create theories that apply just to a
collection of things which then follow certain rules, and this would simply not be
possible without the mathematical notion of a set.
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