

Not for printing, sharing or distribution.

© Cambridge University Press 2012

14 Lines and planes in space 471

- **10.** (a) If u = i + 2j + 3k and v = 2i j + 2k show that $u \times v = 7i + 4j 5k$.
 - (b) Let $w = \lambda u + \mu v$ where λ and μ are scalars. Show that w is perpendicular to the line of intersection of the planes x + 2y + 3z = 5 and 2x y + 2z = 7 for all values of λ and μ .

[8 marks] (© IB Organization 2000)

1. Find the Cartesian equation of the plane containing the two lines

$$x = \frac{3-y}{2} = z - 1$$
 and $\frac{x-2}{3} = \frac{y+1}{-3} = \frac{z-3}{5}$. [8 marks]

Long questions

Xim q.

1. Points *A* and *B* have coordinates (4, 1, 2) and (0, 5, 1). Line l_1 passes

through *A* and has equation $\mathbf{r}_1 = \begin{pmatrix} 4\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$. Line l_2 passes through *B* and has equation $\mathbf{r}_2 = \begin{pmatrix} 0\\5\\1 \end{pmatrix} + t \begin{pmatrix} 4\\-4\\1 \end{pmatrix}$.

- (a) Show that the line l_2 also passes through A.
- (b) Calculate the distance *AB*.
- (c) Find the angle between l_1 and l_2 in degrees.
- (d) Hence find the shortest distance from *B* to l_1 .

[10 marks]

2. (a) Show that the lines $l_1: \mathbf{r} = \begin{pmatrix} -3\\ 3\\ 18 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ -1\\ -8 \end{pmatrix}$ and $l_2: \mathbf{r} = \begin{pmatrix} 5\\ 0\\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$ do not intersect.

(b) Points *P* and *Q* lie on l_1 and l_2 respectively, such that (*PQ*) is perpendicular to both lines.

- (i) Write down \overline{PQ} in terms of λ and μ .
- (ii) Show that $9\mu 69\lambda + 147 = 0$.
- (iii) Find a second equation for λ and μ .
- (iv) Find the coordinates of *P* and the coordinates of *Q*.
- (v) Hence find the shortest distance between l_1 and l_2 . [14 marks]

472 Topic 4: Vectors

© Cambridge University Press 2012

- 3. Plane Π has equation x 2y + z = 20 and point *A* has coordinates (4, -1, 2).
 - (a) Write down the vector equation of the line *l* through *A* which is perpendicular to Π .
 - (b) Find the coordinates of the point of intersection of line l and plane Π .

(c) Hence find the shortest distance from point A to plane Π . [10 marks]

In this question, unit vectors *i* and *j* point East and North, and unit vector *k* is vertically up. The time (*t*) is measured in minutes and the distance in kilometres.

Two aircraft move with constant velocities $v_1 = (7i + 10j + 3k)$ km/min and $v_2 = (3i - 8j - 4k)$ km/min. At t = 0, the first aircraft is at the point with coordinates (16, 30, 3) and the second aircraft at the point with coordinates (24, 66, 12).

- (a) Calculate the speed of the first aircraft.
- b) Write down the position vector of the second aircraft at the time *t* minutes.
- (c) Find the distance between the aircraft after 3 minutes.
- (d) Show that there is a time when the first aircraft is vertically above the second one, and find the distance between them at that time.

5. Line
$$L_1$$
 has equation $r = \begin{pmatrix} 5\\1\\2 \end{pmatrix} + t \begin{pmatrix} -1\\1\\3 \end{pmatrix}$ and line L_2 has equation $r = \begin{pmatrix} 5\\4\\9 \end{pmatrix} + s \begin{pmatrix} 2\\1\\1 \end{pmatrix}$

(a) Find
$$\begin{pmatrix} -1\\1\\3 \end{pmatrix} \times \begin{pmatrix} 2\\1\\1 \end{pmatrix}$$
.

lim a

- (b) Find the coordinates of the point of intersection of the two lines.
- (c) Write down a vector perpendicular to the plane containing the two lines.
- (d) Hence find the Cartesian equation of the plane containing the two lines. [10 marks]
- 6. Three planes have equations:

$$\Pi_{1} : 3x - y + z = 2$$
$$\Pi_{2} : x + 2y - z = -1$$

$$\Pi_3: 5x - 4y + dz = 3$$

(a) Find the value of d for which the three planes do not intersect. (b) Find the vector equation of the line l_1 of intersection of Π_1 and Π_2 .

©CambridgeUniversityPress2012

14 Lines and planes in space 473

Xim q.

(c) For the value of d found in part (a):

- (i) Find the value of p so that the point A (0, 1, p) lines on l_1 .
- (ii) Find the vector equation of the line l_2 through A perpendicular to Π_3 .
- (iii) Hence find the distance between l_1 and Π_3 .

7. Line l_1 has Cartesian equation $\frac{x-2}{4} = \frac{y+1}{-3} = \frac{z}{3}$. Line l_2 is parallel to l_1

and passes through point A(0,-1, 2).

- (a) Write down a vector equation of l_2 .
- (b) Find the coordinates of the point *B* on l_1 such that (*AB*) is perpendicular to l_1 .
- (c) Hence find, to three significant figures, the shortest distance between the two lines. [9 marks]

8. Line *L* has equation
$$\frac{x+5}{3} = \frac{y-1}{3} = \frac{z-2}{-1}$$
.

- a) Show that the point A with coordinates (4,10,-1) lies on L.
- b) Given that point *B* has coordinates (2,1,2), calculate the distance *AB*.
- Find the acute angle between *L* and (*AB*) in radians.
- (d) Find the shortest distance of *B* from *L*.

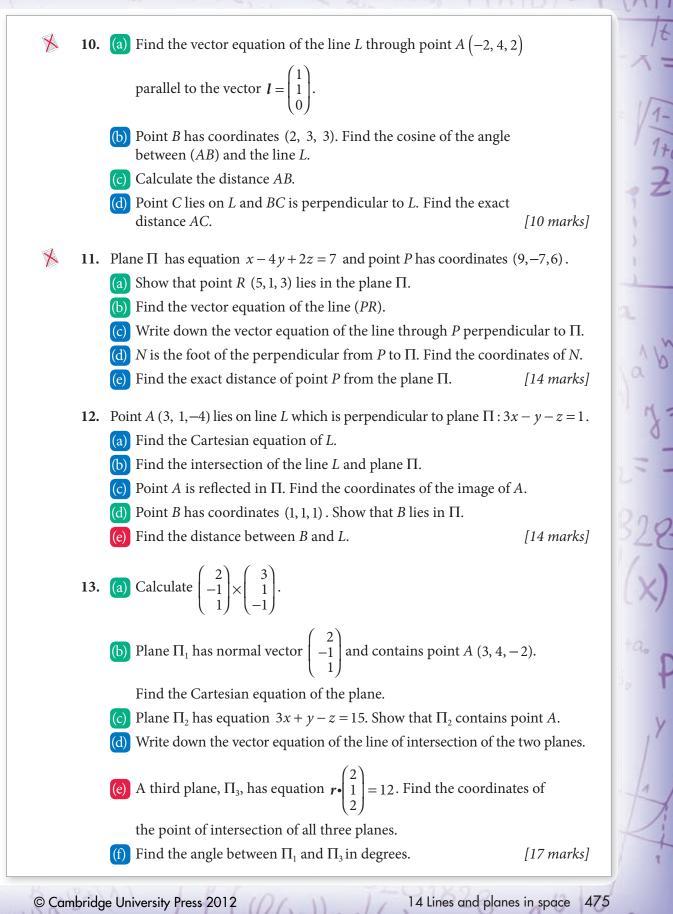
[12 marks]

[17 marks]

9. (a) The plane Π_1 has equation $\mathbf{r} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 1\\-3\\-9 \end{pmatrix}$.

The plane \prod_2 has the equation $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

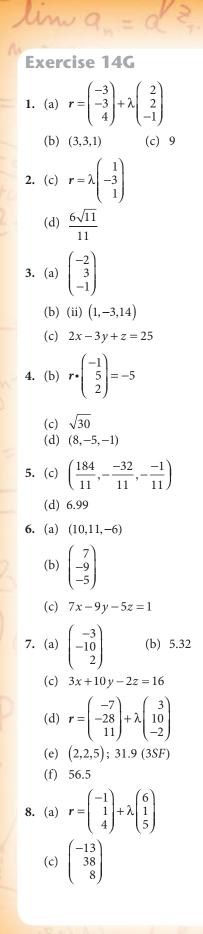
- (i) For points which lie on \prod_1 and \prod_2 , show that $\lambda = \mu$.
- (ii) Hence, or otherwise, find a vector equation of the line of intersection of \prod_1 and \prod_2 .
- (b) The plane \prod_3 contains the line $\frac{2-x}{3} = \frac{y}{-4} = z+1$ and is perpendicular to 3i-2j+k. Find the cartesian equation of \prod_3 .


Not for printing, sharing or distribution.

(c) Find the intersection of \prod_1, \prod_2 and \prod_3 . [12 marks]

(© IB Organization 2005)

474 Topic 4: Vectors


© Cambridge University Press 2012

lini

Not for printing, sharing or distribution.

OF

(d)
$$-13x + 38y + 8z = 83$$

9. (a) $\left(\frac{96}{41}, -\frac{32}{41}, \frac{16}{41}\right)$
(b) $\frac{16\sqrt{41}}{41}$
10. (b) $r = \lambda \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}$
(c) (i) $(2,0,-2)$ (ii) $(-4,0,4)$
(d) $6\sqrt{2}$

Mixed examination practice 14

Short questions

1.
$$r = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

2. 5
3. (a) $3x + y - z = 6$
(b) $\frac{5}{4}$
4. $\left(\frac{3}{2}, -\frac{11}{6}, -\frac{1}{6}\right)$
5. (11,13,8)
6. $\left(\frac{11}{3}, \frac{20}{3}, \frac{2}{3}\right)$ or $\left(\frac{-29}{3}, \frac{-20}{3}, \frac{22}{3}\right)$
7. (a) $x = 4 + \lambda, y = 1 - 3\lambda, z = 12 + 2\lambda$
(b) $\left(\frac{31}{14}, \frac{89}{14}, \frac{59}{7}\right)$
8. (c) $\frac{x - 2}{3} = \frac{(y - 2)}{7} = z - 3$
9. $k = 8$
11. $7x + 2y - 3z = 3$
Long questions
1. (b) $\sqrt{33}$
(c) 45.7°

(d) 4.11

© Cambridge University Press 2012

2. (b) (i)
$$\begin{pmatrix} \mu - 2\lambda + 8\\ \mu + \lambda - 3\\ -\mu + 8\lambda - 16 \end{pmatrix}$$

(iii) $3\mu - 9\lambda + 21 = 0$
(iv) $(1,1,2), (4,-1,3)$
(v) $\sqrt{14}$
3. (a) $r = \begin{pmatrix} 4\\ -1\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix}$
(b) $(6,-5,4)$
(c) $2\sqrt{6}$
4. (a) 12.6 km/min
(b) $(24 + 3t)i + (66 - 8t)j + (12 - 4t)k$
(c) 22 km
(d) 5 km (when $t = 2$)
5. (a) $\begin{pmatrix} -2\\ 7\\ -3 \end{pmatrix}$
(b) $(3,3,8)$
(c) $\begin{pmatrix} -2\\ 7\\ -3 \end{pmatrix}$
(d) $2x - 7y + 3z = 9$
6. (a) $d = 3$
(b) $r = \begin{pmatrix} 3\\ 7\\ 7\\ -3 \end{pmatrix}$
(c) (i) $p = 3$
(ii) $r = \begin{pmatrix} 0\\ 1\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -5\\ -4\\ 3 \end{pmatrix}$
(iii) $\frac{\sqrt{34}}{15} (\approx 0.389)$
7. (a) $r = \begin{pmatrix} 0\\ -1\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 4\\ -3\\ 3 \end{pmatrix}$
(b) $\begin{pmatrix} 30\\ 17, -\frac{14}{17}, -\frac{3}{17} \end{pmatrix}$
(c) 2.81
8. (b) $\sqrt{94}$

line 9

(c) 0.551 (d) 5.08 **9.** (a) (ii) $r = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$ (b) 3x - 2y + z = 5(c) (2,1,1) **10.** (a) $\mathbf{r} = \begin{pmatrix} -2\\4\\2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ (b) $\frac{1}{2}$ (c) $3\sqrt{2}$ (d) $\frac{3\sqrt{2}}{2}$ 11. (b) $r = \begin{pmatrix} 9 \\ -7 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 8 \\ 3 \end{pmatrix}$ (c) $\mathbf{r} = \begin{pmatrix} 9\\-7\\6 \end{pmatrix} + \mu \begin{pmatrix} 1\\-4\\2 \end{pmatrix}$ (d) (7,1,2) (e) $\sqrt{84}$ 12. (a) $\frac{x-3}{3} = \frac{y-1}{-1} = \frac{z+4}{-1}$ (b) (0,2,-3) (c) (-3,3,-2) (e) $3\sqrt{2}$ 13. (a) $\begin{pmatrix} 0 \\ 5 \\ 5 \end{pmatrix}$ (b) 2x - y + z = 0(d) $\mathbf{r} = \begin{pmatrix} 3\\4\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 0\\5\\5 \end{pmatrix}$ (e) (3,4,0) (f) 47.1°

© Cambridge University Press 2012

Answers 877