

# Markscheme

## November 2019

**Mathematics** 

**Higher level** 

Paper 2

14 pages



## Section A

| 1. | $u_1r^3$                | $=-70$ , $u_1r^6=8.75$                    | (M1)                                                         |           |
|----|-------------------------|-------------------------------------------|--------------------------------------------------------------|-----------|
|    | $r^{3} =$               | $=\frac{8.75}{-70}=-0.125$                | (A1)                                                         |           |
|    |                         | -70<br>r = -0.5                           | (A1)                                                         |           |
|    | valio                   | d attempt to find $u_2$                   | (M1)                                                         |           |
|    | for e                   | example: $u_1 = \frac{-70}{-0.125} = 560$ |                                                              |           |
|    | <i>u</i> <sub>2</sub> = | = 560×-0.5                                |                                                              |           |
|    |                         | = -280                                    | A1                                                           |           |
|    |                         |                                           |                                                              | [5 marks] |
| 2. | (a)                     | $X \sim \operatorname{Po}(1.3)$           |                                                              |           |
|    |                         | $P(X \ge 2) = 0.373$                      | (M1)A1                                                       |           |
|    |                         |                                           |                                                              | [2 marks] |
|    | (b)                     | $V \sim B(5, 0.373)$                      | (M1)A1                                                       |           |
|    | No                      | te: Award (M1) for recognition            | of binomial or equivalent, <i>A1</i> for correct parameters. | ]         |
|    |                         | P(V = 4) = 0.0608                         | (M1)A1                                                       |           |
|    |                         |                                           |                                                              | [4 marks] |
|    |                         |                                           | Total                                                        | [6 marks] |
| 3. | (a)                     | f(1) = 0                                  | (A1)                                                         |           |
|    | ( )                     | f(0) = -1                                 | A1                                                           |           |
|    |                         |                                           |                                                              | [2 marks] |
|    | (b)                     | a = f(3)                                  | (M1)                                                         |           |
|    |                         | $\Rightarrow a = 4$                       | A1                                                           |           |
|    |                         |                                           |                                                              | [2 marks] |
|    | (c)                     | domain is $-2 \le x \le 6$                | A1                                                           |           |
|    |                         | range is $-6 \le y \le 10$                | A1                                                           | [2 marks] |
|    |                         |                                           | Total                                                        | -         |
|    |                         |                                           |                                                              | -         |

4. (a) each arc has length 
$$r\theta = 6 \times \frac{\pi}{3} = 2\pi (= 6.283...)$$
 (M1)  
perimeter is therefore  $6\pi (= 18.8)$  (cm) A1

[2 marks]

(b) area of sector, *s*, is 
$$\frac{1}{2}r^2\theta = 18 \times \frac{\pi}{3} = 6\pi (=18.84...)$$
 (A1)

area of triangle, *t*, is 
$$\frac{1}{2} \times 6 \times 3\sqrt{3} = 9\sqrt{3} (=15.58...)$$
 (M1)(A1)

**Note:** area of segment, *k*, is 3.261... implies area of triangle

finding 
$$3s - 2t$$
 or  $3k + t$  or similar  
area  $= 3s - 2t = 18\pi - 18\sqrt{3} (= 25.4) (cm^2)$  (M1)A1

[5 marks]

Total [7 marks]

(M1)

5. attempt to find coefficients in binomial expansion (M1) coefficient of  $x^2 : \binom{n}{2} \times 2^{n-2}$ ; coefficient of  $x^3 : \binom{n}{3} \times 2^{n-3}$  A1A1

**Note:** Condone terms given rather than coefficients. Terms may be seen in an equation such as that below.

$$\binom{n}{3} \times 2^{n-3} = 4\binom{n}{2} \times 2^{n-2}$$
(A1)

attempt to solve equation using GDC or algebraically

 $\binom{n}{3} = 8\binom{n}{2}$   $\frac{n!}{3!(n-3)!} = \frac{8n!}{2!(n-2)!}$   $\frac{1}{3} = \frac{8}{n-2}$  n = 26A1
[6 marks]

#### 6. METHOD 1

| one other root is $3-i$                          | A1   |           |
|--------------------------------------------------|------|-----------|
| let third root be $\alpha$                       | (M1) |           |
| considering sum or product of roots              | (M1) |           |
| sum of roots = $6 + \alpha = \frac{37}{\alpha}$  | A1   |           |
| a<br>10                                          |      |           |
| product of roots $=10\alpha = \frac{10}{\alpha}$ | A1   |           |
| hence $a = 6$                                    | A1   |           |
|                                                  |      | [6 marks] |

-9-

#### METHOD 2

| one other root is $3-i$                                          | A1     |           |
|------------------------------------------------------------------|--------|-----------|
| quadratic factor will be $z^2 - 6z + 10$                         | (M1)A1 |           |
| $P(z) = az^{3} - 37z^{2} + 66z - 10 = (z^{2} - 6z + 10)(az - 1)$ | M1     |           |
| comparing coefficients                                           | (M1)   |           |
| hence $a = 6$                                                    | A1     |           |
|                                                                  |        | [6 marks] |

#### METHOD 3

| substitute $3+i$ into $P(z)$                                                                         | (M1)      |
|------------------------------------------------------------------------------------------------------|-----------|
| a(18+26i)-37(8+6i)+66(3+i)-10=0                                                                      | (M1)A1    |
| equating real or imaginary parts or dividing                                                         | M1        |
| $18a - 296 + 198 - 10 = 0$ or $26a - 222 + 66 = 0$ or $\frac{10 - 66(3 + i) + 37(8 + 6i)}{18 + 26i}$ | A1        |
| hence $a = 6$                                                                                        | A1        |
|                                                                                                      | [6 marks] |

| 7. | $T \sim N(11.6, 0.8^2)$                      |      |
|----|----------------------------------------------|------|
|    | P(T < 10.7   T < 11)                         | (M1) |
|    | $=\frac{P(T < 10.7 \cap T < 11)}{P(T < 11)}$ | (M1) |
|    | $=\frac{P(T<10.7)}{P(T<11)}$                 | (M1) |
|    | R'*7'>'32@+'? '2@52400                       | (A1) |
|    | R'*7'>'33+'?'20448800                        | (A1) |
|    | R'*T'>'32@' T<11) = 0.575                    | A1   |

Note: Accept only 0.575.

[6 marks]

(A1)(A1)A1

(A1)(A1)A1

(A1)A1

#### 8. (a) **METHOD 1**

 $10! - 2 \times 9! (= 2903040)$ 

**Note:** Award **A1** for 10!, **A1** for  $2 \times 9!$ , **A1** for final answer.

**METHOD 2** 9×8×8!

Note: Award A1 for  $9 \times 8$  or equivalent, A1 for 8! and A1 for answer.

#### (b) METHOD 1

(c)

 $8 \times 7 \times 8! (= 2257920)$ 

#### **Note:** Award **(A1)** for $8 \times 7$ , **A1** for final answer.

**METHOD 2** 10!-2×8!-2×2×7×8!

Note: Award A1 for 10! minus EITHER subtracted terms and A1 for final correct answer.

#### [2 marks]

[3 marks]

**METHOD 1**  $8 \times 7 \times (8! - 2 \times 7!) (= 1693440)$ 

(A1)(A1)A1

(A1)(A1)A1

(A1)A2

**Note:** Award **(A1)** for  $8 \times 7$ , **(A1)** for  $2 \times 7!$ , **A1** for final answer. ( $8!-2 \times 7!$ ) can be replaced by  $6 \times 7!$  or  $^7P_2 \times 6!$  which may be awarded the second **A1**.

#### **METHOD 2**

their answer to (a)  $-2 \times 8! - 2 \times 2 \times 7 \times 8!$ 

Note: Award A1 for subtracting each of the terms and A1 for final answer.

#### METHOD 3

their answer to (b)  $-2 \times 7 \times 8!$  or equivalent

Note: Award A1 for the subtraction and A2 for final answer.

[3 marks]

Total [8 marks]

– 11 – N19/5/MATHL/HP2/ENG/TZ0/XX/M

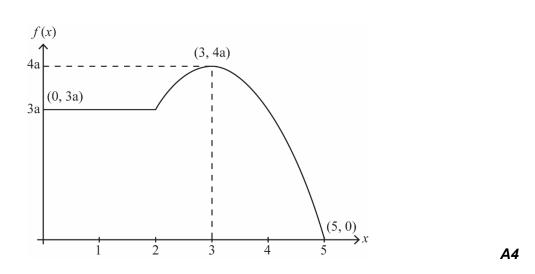
### Section B

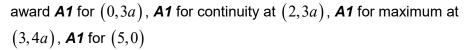
| 9. | (a) | (i)   | A(7.47, 2.28) and $B(43.4, -2.45)$                        | A1A1A1A1 |            |
|----|-----|-------|-----------------------------------------------------------|----------|------------|
|    |     | (ii)  | maximum speed is $2.45 \ (m  s^{-1})$                     | A1       | [5 marks]  |
|    | (b) | (i)   | $v = 0 \Longrightarrow t_1 = 25.1 (s)$                    | (M1)A1   |            |
|    |     | (ii)  | $\int_0^{t_1} v  \mathrm{d}t$                             | (M1)     |            |
|    |     |       | =41.0(m)                                                  | A1       |            |
|    |     | (iii) | $a = \frac{\mathrm{d}v}{\mathrm{d}t}$ at $t = t_1 = 25.1$ | (M1)     |            |
|    |     |       | $a = -0.200 \ (\mathrm{ms^{-2}})$                         | A1       |            |
|    |     | No    | te: Accept $a = -0.2$ .                                   |          | [C montrol |
|    |     |       |                                                           |          | [6 marks]  |
|    | (c) | atter | mpt to integrate between 0 and 30                         | (M1)     |            |

**Note:** An unsupported answer of 38.6 can imply integrating from 0 to 30.

EITHER

| $\int_0^{30}  v  \mathrm{d}t$           | (A1) |
|-----------------------------------------|------|
| OR                                      |      |
| $41.0 - \int_{t_1}^{30} v  \mathrm{d}t$ | (A1) |
| THEN                                    |      |


| A1               | =43.3(m) |
|------------------|----------|
| [3 marks]        |          |
| Total [14 marks] |          |


**10.** (a) 
$$\left(P\left(1 < X < 3\right) =\right) \int_{1}^{2} 3a \, dx + a \int_{2}^{3} -x^{2} + 6x - 5 \, dx$$
 (M1)(A1)(A1)  
=  $3a + \frac{11}{3}a$   
=  $\frac{20}{3}a(=6.67a)$  A1

– 12 –

[4 marks]







**Note:** Award **A3** if correct four points are not joined by a straight line and a quadratic curve.

[4 marks]

(c) (i) 
$$P(0 \le X \le 5) = 6a + a \int_{2}^{5} -x^{2} + 6x - 5 dx$$
 (M1)  
= 15a (A1)  
15a = 1 (M1)  
 $\Rightarrow a = \frac{1}{15} (= 0.0667)$  A1

(ii) 
$$E(X) = \frac{1}{5} \int_0^2 x \, dx + \frac{1}{15} \int_2^5 -x^3 + 6x^2 - 5x \, dx$$
 (M1)(A1)  
= 2.35 A1

continued...

Question 10 continued

(iii) attempt to use 
$$\int_0^m f(x) dx = 0.5$$
 (M1)

$$0.4 + a \int_{2}^{m} -x^{2} + 6x - 5 \, dx = 0.5$$
(A1)

$$a \int_{2}^{\infty} -x^{2} + 6x - 5 \, dx = 0.1$$
attempt to solve integral using GDC and/or analytically (M1)

$$\frac{1}{15} \left[ -\frac{1}{3}x^3 + 3x^2 - 5x \right]_2^m = 0.1$$
  
*m* = 2.44
  
A1
  
[11 marks]

Total [19 marks]

**11.** (a) (i) valid attempt to differentiate implicitly (M1)  

$$4x = 3\sin^2 y \cos y \frac{dy}{dx}$$
 A1A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{3\sin^2 y \cos y}$$
A1

(ii) 
$$\operatorname{at}\left(\frac{1}{4}, \frac{5\pi}{6}\right), \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{3\sin^2 y \cos y} = \frac{1}{3\left(\frac{1}{2}\right)^2 \left(-\frac{\sqrt{3}}{2}\right)}$$
 (M1)

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{8}{3\sqrt{3}} (=-1.54)$$

hence equation of tangent is

=1.24

$$y - \frac{5\pi}{6} = -1.54 \left( x - \frac{1}{4} \right)$$
 OR  $y = -1.54x + 3.00$  (M1)A1

**Note:** Accept 
$$y = -1.54x + 3$$
. [8 marks]

(b) 
$$x = \sqrt{\frac{1}{2}\sin^3 y}$$
 (M1)

$$\int_0^{\pi} \sqrt{\frac{1}{2} \sin^3 y} \, \mathrm{d}y \tag{A1}$$

A1

## [3 marks]

continued...

Question 11 continued

(c) use of volume = 
$$\int \pi x^2 dy$$
 (M1)  
=  $\int_0^{\pi} \frac{1}{2} \pi \sin^3 y \, dy$  A1  
=  $\frac{1}{2} \pi \int_0^{\pi} (\sin y - \sin y \cos^2 y) \, dy$   
Note: Condone absence of limits up to this point.  
reasonable attempt to integrate (M1)  
=  $\frac{1}{2} \pi \left[ -\cos y + \frac{1}{3} \cos^3 y \right]_0^{\pi}$  A1A1  
Note: Award A1 for correct limits (not to be awarded if previous M1 has  
not been awarded) and A1 for correct integrand.  
=  $\frac{1}{2} \pi \left( 1 - \frac{1}{3} \right) - \frac{1}{2} \pi \left( -1 + \frac{1}{3} \right)$  A1  
=  $\frac{2\pi}{3}$  A6  
Note: Do not accept decimal answer equivalent to  $\frac{2\pi}{3}$ .

[6 marks]

Total [17 marks]