

Markscheme

May 2019

Mathematics

Higher level

Paper 1

20 pages

Section A

1.
$$a \cdot b = \begin{pmatrix} 2 \\ k \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ k+2 \\ k \end{pmatrix}$$

$$= -6 + k(k+2) - k$$

$$a \cdot b = 0$$

$$k^{2} + k - 6 = 0$$
attempt at solving their quadratic equation
$$(k+3)(k-2) = 0$$

$$k = -3, 2$$
A1

Note: Attempt at solving using $|a||b| = |a \times b|$ will be *M1A0A0A0* if neither answer found *M1(A1)A1A0* for one correct answer and *M1(A1)A1A1* for two correct answers.

Total [4 marks]

2. attempt at binomial expansion M1 $1 + {\binom{11}{1}} (-2x) + {\binom{11}{2}} (-2x)^2 + \dots$ (A1) ${\binom{11}{2}} = 55$

$$1 - 22x + 220x^2$$
 A1A1

Note: A1 for first two terms, A1 for final term.

Note: Award ***M1(A1)A0A0*** for
$$(-2x)^{11} + \begin{pmatrix} 11 \\ 10 \end{pmatrix} (-2x)^{10} + \begin{pmatrix} 11 \\ 9 \end{pmatrix} (-2x)^9 + \dots$$
,

Total [4 marks]

3. $A = P$ use of the correct formula for area and arc length perimeter is $r\theta + 2r$	(M1) (A1)
Note: A1 independent of previous M1. $\frac{1}{2}r^{2}(1) = r(1) + 2r$	A1
2 $r^{2}-6r=0$ r=6 (as $r > 0$)	A1

Note: Do not award final **A1** if r = 0 is included.

Total [4 marks]

4. (a) EITHER

$$\frac{5\sqrt{15}}{2} = \frac{1}{2} \times 4 \times 5\sin\theta$$
 A1

OR

height of triangle is $\frac{5\sqrt{15}}{4}$ if using 4 as the base or $\sqrt{15}$ if using 5 as the base **A1**

THEN

$$\sin\theta = \frac{\sqrt{15}}{4}$$

[1 mark]

М1

(M1)

(b) let the third side be x $x^2 = 4^2 + 5^2 - 2 \times 4 \times 5 \times \cos \theta$ valid attempt to find $\cos \theta$

Note: Do not accept writing $\cos\left(\arcsin\left(\frac{\sqrt{15}}{4}\right)\right)$ as a valid method.

$$\cos \theta = \pm \sqrt{1 - \frac{15}{16}}$$

= $\frac{1}{4}, -\frac{1}{4}$ A1A1
 $x^2 = 16 + 25 - 2 \times 4 \times 5 \times \pm \frac{1}{4}$
 $x = \sqrt{31} \text{ or } \sqrt{51}$ A1A1

A1 [6 marks]

Total [7 marks]

М1

5. let OX = x

METHOD 1

$\frac{\mathrm{d}x}{\mathrm{d}t} = 24$	(or -24)	(A1)
$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} \times$	$\frac{\mathrm{d}\theta}{\mathrm{d}\theta}$	(M1)

$$3\tan\theta = x$$

EITHER

$$3\sec^2\theta = \frac{\mathrm{d}x}{\mathrm{d}\theta}$$

$$d\theta = 24$$

$$\frac{d\theta}{dt} = \frac{24}{3 \sec^2 \theta}$$
attempt to substitute for $\theta = 0$ into their differential equation

OR

$$\theta = \arctan\left(\frac{x}{3}\right)$$

$$\frac{d\theta}{dx} = \frac{1}{3} \times \frac{1}{1 + \frac{x^2}{9}}$$

$$\frac{d\theta}{dt} = 24 \times \frac{1}{3\left(1 + \frac{x^2}{9}\right)}$$
attempt to substitute for $x = 0$ into their differential equation
$$M1$$

attempt to substitute for x = 0 into their differential equation

THEN

$$\frac{d\theta}{dt} = \frac{24}{3} = 8 \text{ (rad s}^{-1}\text{)}$$
Note: Accept -8 rad s^{-1} .

Question 5 continued

METHOD 2

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 24 \quad \text{(or -24)} \tag{A1}$$

$$3\tan\theta = x \qquad \qquad \textbf{A1}$$

attempt to differentiate implicitly with respect to t M1

$$3\sec^2\theta \times \frac{d\theta}{dt} = \frac{dx}{dt}$$

$$\frac{d\theta}{dt} = \frac{24}{3 \sec^2 \theta}$$
attempt to substitute for $\theta = 0$ into their differential equation
$$\frac{d\theta}{dt} = \frac{24}{3} = 8 (\text{rad s}^{-1})$$
Note: Accept $-8 \, \text{rad s}^{-1}$.

Note: Can be done by consideration of CX, use of Pythagoras.

METHOD 3

let the position of the car be at time t be d - 24t from O (A1)

$$\tan\theta = \frac{d - 24t}{3} \left(= \frac{d}{3} - 8t \right) \tag{M1}$$

Note: For $\tan \theta = \frac{24t}{3}$ award **A0M1** and follow through.

EITHER

attempt to differentiate implicitly with respect to t

$$\sec^2 \theta \frac{\mathrm{d}\theta}{\mathrm{d}t} = -8$$

attempt to substitute for
$$\theta = 0$$
 into their differential equation **M1**

OR

$$\theta = \arctan\left(\frac{d}{3} - 8t\right) \tag{M1}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{8}{1 + \left(\frac{d}{3} - 8t\right)^2}$$

at O,
$$t = \frac{d}{24}$$

continued...

М1

Question 5 continued

THEN

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -8$$

Total [6 marks]

6. (a) use of symmetry eg diagram (M1)

$$P(X > \mu + 5) = 0.2$$
 A1
[2 marks]

$$P(X < \mu + 5 | X > \mu - 5) = \frac{P(X > \mu - 5 \cap X < \mu + 5)}{P(X > \mu - 5)}$$

$$P(\mu - 5 < X < \mu + 5)$$
(M1)

$$=\frac{1}{P(X > \mu - 5)}$$
(A1)
= $\frac{0.6}{P(X > \mu - 5)}$

Note: *A1* for denominator is independent of the previous *A* marks.

OR

use of diagram

(M1)

Note: Only award *(M1)* if the region $\mu - 5 < X < \mu + 5$ is indicated and used.

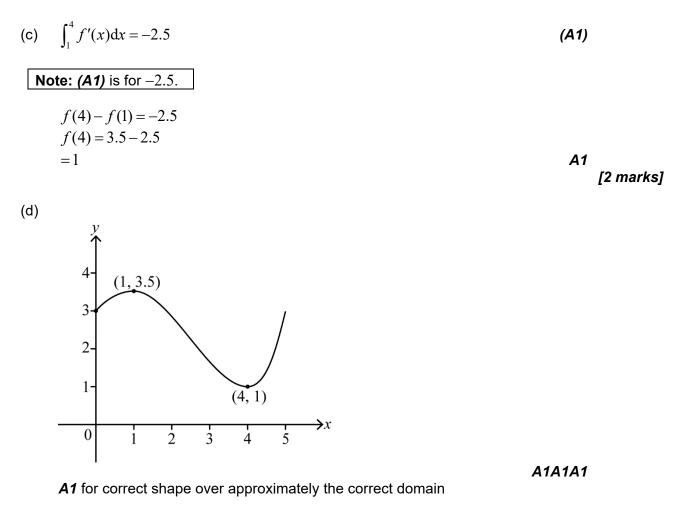
Question 6 continued

$$P(X > \mu - 5) = 0.8 \quad P(\mu - 5 < X < \mu + 5) = 0.6$$
(A1)
Note: Probabilities can be shown on the diagram.

$$= \frac{0.6}{0.8} \qquad M1A1$$
THEN

$$= \frac{3}{4} = (0.75) \qquad A1 \qquad [5 marks]$$
Total [7 marks]
7. attempt at implicit differentiation $M1$
 $3y^2 \frac{dy}{dx} + 3y^2 + 6xy \frac{dy}{dx} - 3x^2 = 0$ A1A1
Note: Award A1 for the second 8 third terms, A1 for the first term, fourth term 8 RHS equal to zero.
substitution of $\frac{dy}{dx} = 0$ $M1$
 $3y^2 - 3x^2 = 0$ $A1$
 $y = x \Rightarrow x^3 = 9 \Rightarrow x = \sqrt[3]{9}$ (or $y^3 = 9 \Rightarrow y = \sqrt[3]{9}$) $A1$
 $y = x \Rightarrow x^3 = 9 \Rightarrow x = \sqrt[3]{9}$ (or $y^3 = 9 \Rightarrow y = \sqrt[3]{9}$) $A1$
 $y = -x \Rightarrow x^3 = 27 \Rightarrow x = 3$ (or $y^3 = -27 \Rightarrow y = -3$) $A1$
 $(\sqrt[3]{9}, \sqrt[3]{9}), (3, -3)$ $A1$
[$\frac{1}{3}$ marks]
8. (a) 3 $A1$
(b) attempt to use definite integral of $f'(x)$ (M1)
 $\int_{0}^{1}{b} f'(x)dx = 0.5$
 $f(1) - f(0) = 0.5$ (A1)
 $f(1) = 0.5 + 3$
 $= 3.5$ $A1$
[3 marks]

Question 8 continued



A1 for maximum and minimum (coordinates or horizontal lines from 3.5 and 1 are required), **A1** for *y*-intercept at 3

[3 marks] Total [9 marks]

Section B

– 14 –

9.	(a) $(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x$	M1A1	
	Note: Do not award the M1 for just $\sin^2 x + \cos^2 x$.		
	Note: Do not award A1 if correct expression is followed by incorrect working	g.	
	$= 1 + \sin 2x$	AG	70 1 1
			[2 marks]
	(b) $\sec 2x + \tan 2x = \frac{1}{\cos 2x} + \frac{\sin 2x}{\cos 2x}$	М1	
Not	e: M1 is for an attempt to change both terms into sine and cosine forms (with argument) or both terms into functions of tan x.	the same	
	- · · · · · · · · · · · · · · · · · · ·		
	$=\frac{1+\sin 2x}{\cos 2x}$		
	$=\frac{\left(\sin x + \cos x\right)^2}{\cos^2 x - \sin^2 x}$	A1A1	
	$=\frac{1}{\cos^2 x - \sin^2 x}$	ATAT	
	Note: Award A1 for numerator, A1 for denominator.		
	$=\frac{\left(\sin x + \cos x\right)^2}{\left(\cos x - \sin x\right)\left(\cos x + \sin x\right)}$	М1	
	$-\frac{1}{(\cos x - \sin x)(\cos x + \sin x)}$	141 1	
	$=\frac{\cos x + \sin x}{\sin x}$	AG	
	$\cos x - \sin x$	_	
	Note: Apply MS in reverse if candidates have worked from RHS to LHS.		
	Note: Alternative method using $\tan 2x$ and $\sec 2x$ in terms of $\tan x$.		
			[4 marks]
	(c) METHOD 1		
	$\int \frac{\pi}{6} (\cos x + \sin x) dx$		
	$\int_0^{\frac{\pi}{6}} \left(\frac{\cos x + \sin x}{\cos x - \sin x} \right) dx$	A1	
	Note: Award A1 for correct expression with or without limits.		
	EITHER		
	$= \left[-\ln\left(\cos x - \sin x\right) \right]_{0}^{\frac{\pi}{6}} \text{ or } \left[\ln\left(\cos x - \sin x\right) \right]_{\frac{\pi}{6}}^{0}$	(M1)A1A1	
	Note: Award <i>M1</i> for integration by inspection or substitution, <i>A1</i> for $\ln(\cos \theta)$	$x - \sin x$),	
	A1 for completely correct expression including limits.	,	
	$= -\ln\left(\cos\frac{\pi}{6} - \sin\frac{\pi}{6}\right) + \ln\left(\cos 0 - \sin 0\right)$	М1	
	Note: Award M1 for substitution of limits into their integral and subtraction.		
	$= -\ln\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)$	(A1)	
		c	ontinued

Question 9 continued

OR

let
$$u = \cos x - \sin x$$

$$\frac{du}{dx} = -\sin x - \cos x = -(\sin x + \cos x)$$

$$-\int_{1}^{\frac{\sqrt{3}}{2} - \frac{1}{2}} \left(\frac{1}{u}\right) du$$
A1A1

Note: Award A1 for correct limits even if seen later, A1 for integral.

$$= \left[-\ln u \right]_{1}^{\frac{\sqrt{3}}{2} - \frac{1}{2}} \text{ or } \left[\ln u \right]_{\frac{\sqrt{3}}{2} - \frac{1}{2}}^{1}$$

$$(\sqrt{3} - 1)$$

$$= -\ln\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)(+\ln 1)$$
 M1

THEN

$$=\ln\left(\frac{2}{\sqrt{3}-1}\right)$$
 M1

Note: Award *M1* for both putting the expression over a common denominator and for correct use of law of logarithms.

$$=\ln\left(1+\sqrt{3}\right) \tag{M1)A1}$$

[9 marks]

METHOD 2

 $\left[\frac{1}{2}\ln(\tan 2x + \sec 2x) - \frac{1}{2}\ln(\cos 2x)\right]_{0}^{\frac{\pi}{6}}$ A1A1 $= \frac{1}{2}\ln(\sqrt{3} + 2) - \frac{1}{2}\ln\left(\frac{1}{2}\right) - 0$ A1A1(A1)

$$=\frac{1}{2}\ln\left(4+2\sqrt{3}\right)$$
 M1

$$= \ln\left(1 + \sqrt{3}\right)$$
 A1

[9 marks]

Total [15 marks]

(a)	(i) $p(2) = 8 - 12 + 16 - 24$	(M1)	
	Note: Award M1 for a valid attempt at remainder theorem or polynomial	mial division	
	=-12 remainder $=-12$	A1	
	(ii) $p(3) = 27 - 27 + 24 - 24 = 0$ remainder = 0	A1	
			[3 ma
(b)	x = 3 (is a zero)	A1	
No	te: Can be seen anywhere.		
	EITHER		
	factorise to get $(x-3)(x^2+8)$	(M1)A1	
	$x^2 + 8 eq 0$ (for $x \in \mathbb{R}$) (or equivalent statement)	R1	
N	$x^2 + 8 \neq 0$ (for $x \in \mathbb{R}$) (or equivalent statement) ote: Award R1 if correct two complex roots are given.	R1	
N		R1	
N	ote: Award R1 if correct two complex roots are given.	R1 A1	
N	ote: Award <i>R1</i> if correct two complex roots are given.		
N	ote: Award R1 if correct two complex roots are given. OR $p'(x) = 3x^2 - 6x + 8$	A1	
N	ote: Award <i>R1</i> if correct two complex roots are given. OR $p'(x) = 3x^2 - 6x + 8$ attempting to show $p'(x) \neq 0$ eg discriminant = $36 - 96 < 0$, completing the square	A1 M1	
N	ote: Award <i>R1</i> if correct two complex roots are given. OR $p'(x) = 3x^2 - 6x + 8$ attempting to show $p'(x) \neq 0$ <i>eg</i> discriminant = $36 - 96 < 0$, completing the square no turning points	A1 M1	[4 ma
	ote: Award <i>R1</i> if correct two complex roots are given. OR $p'(x) = 3x^2 - 6x + 8$ attempting to show $p'(x) \neq 0$ eg discriminant = $36 - 96 < 0$, completing the square no turning points THEN only one real zero (as the curve is continuous)	A1 M1 R1 AG	[4 ma
N (c)	ote: Award <i>R1</i> if correct two complex roots are given. OR $p'(x) = 3x^2 - 6x + 8$ attempting to show $p'(x) \neq 0$ <i>eg</i> discriminant = $36 - 96 < 0$, completing the square no turning points THEN	A1 M1 R1	[4 mai

Question 10 continued

(d)
$$\frac{6\lambda^{3}e^{-\lambda}}{6} = \frac{3\lambda^{2}e^{-\lambda}}{2} - 2\lambda e^{-\lambda} + 3e^{-\lambda}$$
M1A1
Note: Allow factorials in the denominator for A1.
 $2\lambda^{3} - 3\lambda^{2} + 4\lambda - 6 = 0$
A1
Note: Accept any correct cubic equation without factorials and $e^{-\lambda}$.
EITHER
 $4(2\lambda^{3} - 3\lambda^{2} + 4\lambda - 6) = 8\lambda^{3} - 12\lambda^{2} + 16\lambda - 24 = 0$
(M1)
 $2\lambda = 3$
(M1)
 $2\lambda = 3$
(M1)
OR
 $(2\lambda - 3)(\lambda^{2} + 2) = 0$
(M1)(A1)
THEN
 $\lambda = 1.5$
A1

A1 [6 marks]

Total [15 marks]

(a)	(i)	appreciation that two points distinct from P need to be chosen from each line ${}^{4}C_{2} \times {}^{3}C_{2}$ = 18	M1 A1	
	(ii)	EITHER		
	(")	consider cases for triangles including P or triangles not including $3 \times 4 + 4 \times {}^{3}C_{2} + 3 \times {}^{4}C_{2}$	P M1 (A1)(A1)	
	No	te: Award A1 for 1 st term, A1 for 2 nd & 3 rd term.		
		OR		
		consider total number of ways to select 3 points and subtract tho with 3 points on the same line	ose <i>M1</i>	
		${}^{8}C_{3} - {}^{5}C_{3} - {}^{4}C_{3}$	(A1)(A1)	
	No	te: Award A1 for 1 st term, A1 for 2 nd & 3 rd term.		
		56-10-4		
		THEN		
		= 42	A1	[6 marks]
(b)	ME	THOD 1		
	subs	stitution of $(4, 6, 4)$ into both equations	(M1)	
	$\lambda =$	3 and $\mu = 1$	A1A1	
	(4,	6, 4)	AG	
	ME	THOD 2		
		mpting to solve two of the three parametric equations	M1	
		3 or $\mu = 1$	A1	
		ck both of the above give (4, 6, 4)	M1AG	_
No		they have shown the curve intersects for all three coordinates the check (4,6,4) with one of " λ " or " μ ".	y only need	
L				[3 marks]
(c)	$\lambda =$	2	A1	[1 mark]
(d)	→ PA :	$ = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \vec{PB} = \begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix} $	A1A1	

– 18 –

Note: Award **A1A0** if both are given as coordinates.

[2 marks] continued...

Question 11 continued

(e) METHOD 1

area triangle
$$ABP = \frac{1}{2} \begin{vmatrix} \vec{PB} \times \vec{PA} \end{vmatrix}$$
 M1

$$\begin{pmatrix} =\frac{1}{2} \begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix} \times \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$$
 A1

$$=\frac{\sqrt{29}}{2}$$

EITHER

$$\vec{PC} = 3\vec{PA}, \vec{PD} = 3\vec{PB}$$
 (M1)

area triangle PCD =
$$9 \times \text{area triangle ABP}$$
 (M1)A1

$$=\frac{9\sqrt{29}}{2}$$

OR

D has coordinates (-11, -12, -2) **A1**

area triangle
$$PCD = \frac{1}{2} \left| \overrightarrow{PD} \times \overrightarrow{PC} \right| = \frac{1}{2} \left| \begin{pmatrix} -15 \\ -18 \\ -6 \end{pmatrix} \times \begin{pmatrix} -3 \\ -6 \\ -3 \end{pmatrix} \right|$$
 M1A1

Note: A1 is for the correct vectors in the correct formula.

$$=\frac{9\sqrt{29}}{2}$$

THEN

area of CDBA =
$$\frac{9\sqrt{29}}{2} - \frac{\sqrt{29}}{2}$$

= $4\sqrt{29}$

A1 [8 marks]

Question 11 continued

METHOD 2

D has coordinates
$$(-11, -12, -2)$$
 A1

area
$$= \frac{1}{2} \left| \vec{CB} \times \vec{CA} \right| + \frac{1}{2} \left| \vec{BC} \times \vec{BD} \right|$$
 M1

Note: Award M1 for use of correct formula on appropriate non-overlapping triangles.

Note: Different triangles or vectors could be used.

$$\vec{CB} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{CA} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$

$$\vec{CB} \times \vec{CA} = \begin{pmatrix} -4 \\ 6 \\ -8 \end{pmatrix}$$

$$\vec{CB} \times \vec{CA} = \begin{pmatrix} -4 \\ 6 \\ -8 \end{pmatrix}$$

$$\vec{BC} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \quad \vec{BD} = \begin{pmatrix} -10 \\ -12 \\ -4 \end{pmatrix}$$

$$\vec{BC} \times \vec{BD} = \begin{pmatrix} -12 \\ 18 \\ -24 \end{pmatrix}$$

$$A1$$

Note: Other vectors which might be used are
$$\vec{DA} = \begin{pmatrix} 14\\ 16\\ 5 \end{pmatrix}$$
, $\vec{BA} = \begin{pmatrix} 4\\ 4\\ 1 \end{pmatrix}$, $\vec{DC} = \begin{pmatrix} 12\\ 12\\ 3 \end{pmatrix}$.

Note: Previous A1A1A1A1 are all dependent on the first M1.

valid attempt to find a value of $\frac{1}{2}|a \times b|$ M1 Note: M1 independent of triangle chosen. area $=\frac{1}{2} \times 2 \times \sqrt{29} + \frac{1}{2} \times 6 \times \sqrt{29}$ $= 4\sqrt{29}$ A1

Note: Accept $\frac{1}{2}\sqrt{116} + \frac{1}{2}\sqrt{1044}$ or equivalent.

[8 marks] Total [20 marks]