

Markscheme

May 2019

Mathematics

Higher level

Paper 2

16 pages

Section A

1. METHOD 1

equation of tangent is y = 22.167...x - 14.778... OR y - 7.389... = 22.167...(x - 1)(M1)(A1) meets the x-axis when y = 0 x = 0.667meets x -axis at $(0.667, 0) \left(= \left(\frac{2}{3}, 0\right) \right)$ A1A1

Note: Award **A1** for $x = \frac{2}{3}$ or x = 0.667 seen and **A1** for coordinates (x, 0) given.

METHOD 2

Attempt to differentiate (M1) $\frac{dy}{dx} = e^{2x} + 2xe^{2x}$ when x = 1, $\frac{dy}{dx} = 3e^2$ (M1) equation of the tangent is $y - e^2 = 3e^2(x-1)$ $y = 3e^2x - 2e^2$ meets x-axis at $x = \frac{2}{3}$ $\left(\frac{2}{3}, 0\right)$ A1A1

Note: Award **A1** for $x = \frac{2}{3}$ or x = 0.667 seen and **A1** for coordinates (x, 0) given.

Total [4 marks]

2. (a)
$$z = 2e^{\frac{\pi}{4}i} (= 2e^{0.785i})$$
 A1
Note: Accept all answers in the form $2e^{(\frac{\pi}{4}+2\pi n)i}$.
 $z = 2e^{\frac{5\pi}{4}i} (= 2e^{3.93i})$ OR $z = 2e^{-\frac{3\pi}{4}i} (= 2e^{-2.36i})$ (M1)A1
Note: Accept all answers in the form $2e^{(-\frac{3\pi}{4}+2\pi n)i}$.
Note: Award M1A0 for correct answers in the incorrect form, $eg - 2e^{\frac{\pi}{4}i}$.
[3 marks]

Question 2 continued

(b)	z = (z = z)	1.41+1.41i, $z = -1.41 - 1.41i$ = $\sqrt{2} + \sqrt{2}i$, $z = -\sqrt{2} - \sqrt{2}i$)	A1A1	
	([2 marks]
			Tota	l [5 marks]
(a)	(i)	6.75	A1	
	(ii)	2.22	A1	[2 marks]
(b)	(i)	8.75	A1	
	(ii)	2.22	A1	[2 marks]
(c)	the o	order is 3, 4, 6, 7, 7, 8, 9, 10 lian is currently 7	A1	
N	o te: T with whic	This can be indicated by a diagram/list, rather than actually stated. 9 numbers the middle value (median) will be the 5 th value ch will correspond to 7 regardless of whether the position of the median	R1	
N	mov	res up or down	R1	
	JIE. /			[3 marks]
			Tota	l [7 marks]
(a)	f(x	$(z) \geq 3$	A1	[1 mark]
(b)	x =	$\sec y + 2$	(M1)	
Not	e: Ex	change of variables can take place at any point.		

 $\frac{1}{\cos y = \frac{1}{x-2}}$ $f^{-1}(x) = \arccos\left(\frac{1}{x-2}\right), \ x \ge 3$ A1A1

Note: Allow follow through from (a) for last A1 mark which is independent of earlier marks in (b).

[4 marks]

Total [5 marks]

(A1)

- 8 -

5. METHOD 1

write as $\int 1 \times (\ln x)^2 dx$	(M1)
$= x(\ln x)^{2} - \int x \times \frac{2(\ln x)}{x} dx \Big(= x(\ln x)^{2} - \int 2\ln x \Big)$	M1A1
$= x \left(\ln x\right)^2 - 2x \ln x + \int 2dx$	(M1)(A1)
$= x(\ln x)^2 - 2x\ln x + 2x + c$	A1

METHOD 2

let $u = \ln x$	M1
d <i>u</i> _ 1	
$\frac{1}{\mathrm{d}x} - \frac{1}{x}$	
$\int u^2 e^u du$	A1
$= u^2 e^u - \int 2u e^u du$	М1
$=u^2\mathrm{e}^u-2u\mathrm{e}^u+\int 2\mathrm{e}^u\mathrm{d} u$	A1
$=u^2\mathrm{e}^u-2u\mathrm{e}^u+2\mathrm{e}^u+c$	

 $= x(\ln x)^2 - 2x\ln x + 2x + c$ M1A1

METHOD 3

Setting up $u = \ln x$ and $\frac{dv}{dx} = \ln x$	М1
$\ln x(x\ln x - x) - \int (\ln x - 1) dx$	M1A1
$= x(\ln x)^{2} - x\ln x - (x\ln x - x) + x + c$	M1A1
$= x(\ln x)^2 - 2x\ln x + 2x + c$	A1
	Total [6 marks]

(a)

A1

Question 6 continued

(b) (i)
$$\pi - \theta$$
 (or any equivalent) **A1**

(ii)
$$\arg\left(\frac{z}{z-2a}\right) = \arg(z) - \arg(z-2a)$$
 (M1)
= $2\theta - \pi$ (or any equivalent) A1

(c) METHOD 1

if
$$\operatorname{Re}\left(\frac{z}{z-2a}\right) = 0$$
 then $2\theta - \pi = \frac{n\pi}{2}$, (*n* odd)
 $-\pi < 2\theta - \pi < 0 \Rightarrow n = -1$ (M1)

$$2\theta - \pi = -\frac{\pi}{2} \tag{A1}$$

$$\theta = \frac{\pi}{4}$$
 A1

METHOD 2

$$\frac{a+bi}{-a+bi} = \frac{b^2 - a^2 - 2abi}{a^2 + b^2}$$
 M1

$$\operatorname{Re}\left(\frac{z}{z-2a}\right) = 0 \Longrightarrow b^{2} - a^{2} = 0$$

$$b = a$$

$$\theta = \frac{\pi}{4}$$
A1

Note: Accept any equivalent, $eg \ \theta = -\frac{7\pi}{4}$.

[3 marks]

Total [7 marks]

7. volume
$$= \pi \int_{0}^{9} \left(y^{\frac{1}{2}} + 1 \right)^{2} dy - \pi \int_{1}^{9} (y - 1) dy$$

(M1)(M1)(M1)(A1)(A1)

Note: Award (*M1*) for use of formula for rotating about *y*-axis, (*M1*) for finding at least one inverse, (*M1*) for subtracting volumes, (*A1*)(*A1*)for each correct expression, including limits. = $268.6... - 100.5...(85.5\pi - 32\pi)$ = $168 (= 53.5\pi)$ *A2*

A2 Total [7 marks]

A1A1

[2 marks]

8.

(a)
$$x < -0.414, x > 2.41$$

 $\left(x < 1 - \sqrt{2}, x > 1 + \sqrt{2}\right)$

Note: Award A1 for -0.414, 2.41 and A1 for correct inequalities.

(b)	check for $n=3$,	
	16 > 9 so true when $n = 3$	A1
	assume true for $n = k$	
	$2^{k+1} > k^2$	M1

Note: Award *M0* for statements such as "let n = k".

Note: Subsequent marks after this M1 are independent of this mark and can be awa	arded.
prove true for $n = k + 1$	
$2^{k+2} = 2 \times 2^{k+1}$	
$> 2k^2$	М1
$=k^2+k^2 \tag{1}$	И1)
$>k^{2}+2k+1$ (from part (a))	A1
which is true for $k \ge 3$	R1
Note: Only award the A1 or the R1 if it is clear why. Alternate methods are possible	<u>.</u>
$=(k+1)^2$	
hence if true for $n = k$ true for $n = k + 1$, true for $n = 3$ so true for all $n \ge 3$	R1
Note: Only award the final R1 provided at least three of the previous marks are awa	arded.
	[7 marks

Total [9 marks]

Section B

9.	(a)	(i)	use of formula or Venn diagram $0.72 + 0.45 - 1$	(M1) (A1)	
			= 0.17	A1	
		(ii)	0.72 - 0.17 = 0.55	A1	[4 marks]
					[' '''''''''''''''''''''''''''''''''''
	(b)	(i)	$200 \times 0.45 = 90$	A1	
		(ii)	let X be the number of customers who order cake $X = P(200, 0, 45)$	(1114)	
			$A \sim B(200, 0.45)$ B(V > 100) - B(V > 101)(-1, B(V < 100))	(IVI I) (NAA)	
			$r(X \ge 100) = r(X \ge 101)(=1 - r(X \le 100))$	(111)	
			= 0.0681	A1	[4 marks]
	(c)	(i)	$0.46 \times 0.8 = 0.368$	A1	
		(ii)	METHOD 1		
			$0.368 + 0.54 \times P(S F) = 0.72$	M1A1A1	
		Not	te: Award M1 for an appropriate tree diagram. Award A1	for LHS, A1 for RHS	S.
			$P(S \mid F) = 0.652$	A1	
			METHOD 2		
			$P(S F) = \frac{P(S \cap F)}{P(F)}$	(M1)	
			$=\frac{0.72-0.368}{0.54}$	A1A1	
		Not	te: Award A1 for numerator, A1 for denominator.		
			$P(S \mid F) = 0.652$	A1	[5 marks]
				Total	[13 marks]

10. (a)
$$3, -3$$

A1A1
[2 marks]
(b) stretch parallel to the y-axis (with x-axis invariant), scale factor $\frac{2}{3}$
A1
translation of $\begin{pmatrix} -0.003 \\ 0 \end{pmatrix}$ (shift to the left by 0.003)
A1
Note: Can be done in either order.
[2 marks]
(c) $\frac{1}{2} \int_{0}^{1} \frac{1}{(0.0035, 4.76)} \int_{0}^{1} \frac{1}{(0.0035, 4.76)} \int_{0}^{1} \frac{1}{(0.0035, 4.76)} \int_{0}^{1} \frac{1}{(0.0085, -1.24)} \int_{0}^{1} \frac{1}{(0.0085, -1.24)} \int_{0}^{1} \frac{1}{(0.0085, -1.24)} \int_{0}^{1} \frac{1}{(0.0035, 4.76)} \int_{1}^{1} \frac{1}{[3 marks]}$
(d) $p \ge 3$ between $t = 0.0016762$ and 0.0053238 and $t = 0.011676$
and 0.015324
(M1)(A1)
Note: Award M1A1 for either interval.
 $= 0.00730$
(e) $p_{xy} = \frac{1}{0.007} \int_{0}^{1007} 6 \sin(100\pi t) \sin(100\pi (t + 0.003)) dt$
(M1)
 $= 2.87$
(f) $2 marks$

continued...

– 13 –

Question 10 continued

(f)	in each cycle the area under the t axis is smaller than area above the t axis the curve begins with the positive part of the cycle	R1 R1	
			[2 marks]
(g)	$a = \frac{4.76 - (-1.24)}{2}$	(M1)	
	a = 3.00	A1	
	$d = \frac{4.76 + (-1.24)}{2}$		
	d = 1.76	A1	
	$b = \frac{2\pi}{0.01}$		
	$b = 628 (= 200\pi)$	A1	
	$c = 0.0035 - \frac{0.01}{4}$	(M1)	
	c = 0.00100	A1	
			[6 marks]
		Total	[20 marks]

Na		word Md for own of the roots Ad for 2 Award AOMAAO for just log rul	1_{aa} $h + 1_{aa}$ $a = 2$
		$\log_2 a + \log_2 b + \log_2 c + d\mathbf{i} - d\mathbf{i} = 3$	M1A1
11.	(a)	recognition of the other root $= -d\mathbf{i}$	(A1)

Note: Award M1 for sum of the roots, A1 for 3. Award A	DM1A0 for just $\log_2 a + \log_2 b + \log_2 c = 3$.
$\log_2 abc = 3$	(M1)
$\Rightarrow abc = 2^3$	A1
abc = 8	AG
	[5 marks

Question 11 continued

let the geometric series be u_1, u_1r, u_1r^2

$$(u_1 r)^3 = 8$$
 M1
 $u_1 r = 2$ A1

hence one of the roots is $\log_2 2 = 1$

METHOD 2

b c	
-=-	
$b^2 = ac \Longrightarrow b^3 = abc = 8$	M1
<i>b</i> = 2	A1
hence one of the roots is $\log_2 2 = 1$	R1
	[3 marks]

(c) METHOD 1

product of the roots is $r_1 \times r_2 \times 1 \times di \times -di = -8d^2$	(M1)(A1)
$r_1 \times r_2 = -8$	A1
sum of the roots is $r_1 + r_2 + 1 + di + -di = 3$	(M1)(A1)
$r_1 + r_2 = 2$	A1
solving simultaneously	(M1)
$r_1 = -2$, $r_2 = 4$	A1A1

METHOD 2

product of the roots $\log_2 a \times \log_2 b \times \log_2 c \times di \times - di = -8d^2$	M1A1
$\log_2 a \times \log_2 b \times \log_2 c = -8$	A1

EITHER

a, *b*, *c* can be written as $\frac{2}{r}$, 2, 2*r* **M1** $\left(\log_2 \frac{2}{r}\right)(\log_2 2)(\log_2 2r) = -8$ attempt to solve **M1** $(1-\log_2 r)(1+\log_2 r) = -8$ $\log_2 r = \pm 3$ $r = \frac{1}{8}, 8$ **A1A1**

Question 11 continued

OR

<i>a</i> , <i>b</i> , <i>c</i> can be written as a , 2, $\frac{4}{a}$	М1
$(\log_2 a)(\log_2 2)\left(\log_2 \frac{4}{a}\right) = -8$	
attempt to solve	M1
$a = \frac{1}{4}, 16$	1A1

THEN

(A1)	a, and c are $\frac{1}{4}$, 16
A1 [9 marks]	roots are $-2, 4$
Total [17 marks]	