Mathematics Higher level Paper 2 | Tuesday 14 May 2019 (morning | Tuesdav | √14 Mav | v 2019 | (morning | |------------------------------|---------|---------|--------|----------| |------------------------------|---------|---------|--------|----------| | | Can | dida | te se | ssior | num | nber | | |--|-----|------|-------|-------|-----|------|--| | | | | | | | | | 2 hours #### Instructions to candidates - Write your session number in the boxes above. - Do not open this examination paper until instructed to do so. - A graphic display calculator is required for this paper. - Section A: answer all questions. Answers must be written within the answer boxes provided. - Section B: answer all questions in the answer booklet provided. Fill in your session number on the front of the answer booklet, and attach it to this examination paper and your cover sheet using the tag provided. - Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures. - A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper. - The maximum mark for this examination paper is [100 marks]. 2219-7206 Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. ### **Section A** Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary. | 1. [Maximum mark: 5] | |-----------------------------| |-----------------------------| In triangle ABC, AB=5, BC=14 and AC=11. Find all the interior angles of the triangle. Give your answers in degrees to one decimal place. | | | | -3- | M19/5/MATHL/HP2/ENG/TZ | 2/XX | |----|-------|---|--------------------------|------------------------------|------| | 2. | [Max | ximum mark: 5] | | | | | | distr | my owns a shop. His daily income f
ribution, with a mean daily income o
it, Timmy's daily income needs to b | of \$820, and a standard | | | | | (a) | Calculate the probability that, on | a randomly selected da | y, Timmy makes a profit. | [2] | | | The | shop is open for 24 days every mo | onth. | | | | | (b) | Calculate the probability that, in a between 5 and 10 days (inclusive | | nth, Timmy makes a profit on | [3] | **Turn over** [3] [3] # **3.** [Maximum mark: 8] Iqbal attempts three practice papers in mathematics. The probability that he passes the first paper is 0.6. Whenever he gains a pass in a paper, his confidence increases so that the probability of him passing the next paper increases by 0.1. Whenever he fails a paper the probability of him passing the next paper is 0.6. (a) Complete the given probability tree diagram for Iqbal's three attempts, labelling each branch with the correct probability. - (b) Calculate the probability that Iqbal passes at least two of the papers he attempts. [2] - (c) Find the probability that Iqbal passes his third paper, given that he passed only one previous paper. - **4.** [Maximum mark: 6] - (a) Sketch the graphs of $y = \sin^3 x + \ln x$ and $y = 1 + \cos x$ on the following axes for $0 < x \le 9$. [2] (b) Hence solve $\sin^3 x + \ln x - \cos x - 1 < 0$ in the range $0 < x \le 9$. [4] **5.** [Maximum mark: 6] (a) Prove the identity $$\frac{1+\sin 2x}{\cos 2x} = \frac{1+\tan x}{1-\tan x}.$$ [4] (b) Solve the equation $$\frac{1+\sin 2x}{\cos 2x} = \sqrt{3}$$ for $0 \le x < 2\pi$. [2] |
 |
 | | |------|------|--| |
 |
 | | [Maximum mark: 6] | |-------------------------------------| |-------------------------------------| A particle moves along a horizontal line such that at time t seconds, $t \ge 0$, its acceleration a is given by a = 2t - 1. When t = 6, its displacement s from a fixed origin O is 18.25 m. When t = 15, its displacement from O is 922.75 m. Find an expression for s in terms of t. |
 | |------| |
 | **Turn over** **7.** [Maximum mark: 7] Suppose that u_1 is the first term of a geometric series with common ratio r. Prove, by mathematical induction, that the sum of the first n terms, S_n is given by $$S_n = \frac{u_1(1-r^n)}{1-r}$$, where $n \in \mathbb{Z}^+$. |
 | | |------|--| |
 | | - **8.** [Maximum mark: 7] - (a) Find the roots of the equation $w^3 = 8i$, $w \in \mathbb{C}$. Give your answers in Cartesian form. [4] One of the roots w_1 satisfies the condition $\operatorname{Re}(w_1) = 0$. - (b) Given that $w_1 = \frac{z}{z-i}$, express z in the form a+bi where $a,b\in\mathbb{Q}$. [3] |
 | • |
٠. | ٠. | • |
٠. | ٠. | • |
٠. | ٠. | ٠ |
• |
 |
 | • |
 | • | ٠. | |
• • | ٠. | • |
• | | |
 |
 | | | |------|---|--------|----|---|--------|------|---|--------|------|---|-------|------|------|---|------|---|----|--|---------|----|---|-------|------|------|------|------|---|---|
 | | | |
 | |
 | | |
 | | - |
 | | | |
 |
 | |
 | | | |
 | | | | | |
 |
 | | | |
 | |
 | | |
 | | |
 |
 | | |
 |
 | |
 | | | |
 | | | |
 |
 |
 |
 | | | |
 | |
 | | |
 |
 | |
 |
 | | |
 |
 | |
 | | | |
 | | | |
 |
 |
 |
 | | | |
 | |
 | | |
 |
 | |
 |
 | | |
 |
 | |
 | | | |
 | | | |
 |
 |
 |
 | • | • | • | • | |
 | |
٠. | ٠. | |
٠. | ٠. | - |
 | ٠. | | |
 |
 | |
 | | ٠. | |
 | ٠. | • | |
 | |
 |
 | | | |
 | |
 | | |
 | | |
 | | | |
 |
 | |
 | | | |
 | | • | |
 |
 |
 |
 | | | |
 | |
 | | |
 | | |
 |
 | | |
 |
 | |
 | | | |
 | | | |
 |
 |
 |
 | | | **Turn over** [4] Do not write solutions on this page. ## **Section B** Answer all questions in the answer booklet provided. Please start each question on a new page. **9.** [Maximum mark: 15] Consider the polynomial $P(z) \equiv z^4 - 6z^3 - 2z^2 + 58z - 51$, $z \in \mathbb{C}$. - (a) Express P(z) in the form $(z^2 + az + b)(z^2 + cz + d)$ where $a, b, c, d \in \mathbb{R}$. [7] - (b) Sketch the graph of $y = x^4 6x^3 2x^2 + 58x 51$, stating clearly the coordinates of any maximum and minimum points and intersections with axes. [6] - (c) Hence, or otherwise, state the condition on $k \in \mathbb{R}$ such that all roots of the equation P(z) = k are real. [2] - **10.** [Maximum mark: 16] Steffi the stray cat often visits Will's house in search of food. Let X be the discrete random variable "the number of times per day that Steffi visits Will's house". The random variable X can be modelled by a Poisson distribution with mean 2.1. (a) Find the probability that on a randomly selected day, Steffi does not visit Will's house. [2] Let *Y* be the discrete random variable "the number of times per day that Steffi is fed at Will's house". Steffi is only fed on the first four occasions that she visits each day. (b) Copy and complete the probability distribution table for Y. | У | 0 | 1 | 2 | 3 | 4 | |--------|---|---|---|---|---| | P(Y=y) | | | | | | - (c) Hence find the expected number of times per day that Steffi is fed at Will's house. [3] - (d) In any given year of 365 days, the probability that Steffi does not visit Will for at most n days in total is 0.5 (to one decimal place). Find the value of n. [3] - (e) Show that the expected number of occasions per year on which Steffi visits Will's house and is not fed is at least 30. [4] Do **not** write solutions on this page. **11.** [Maximum mark: 19] The plane $\varPi_{_1}$ contains the points P(1,6,-7),Q(0,1,1) and R(2,0,-4). (a) Find the Cartesian equation of the plane containing P, Q and R. [6] The Cartesian equation of the plane Π_2 is given by x - 3y - z = 3. (b) Given that Π_1 and Π_2 meet in a line L, verify that the vector equation of L can be given by $$\mathbf{r} = \begin{pmatrix} \frac{5}{4} \\ 0 \\ -\frac{7}{4} \end{pmatrix} + \lambda \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{5}{2} \end{pmatrix}$$. [3] The Cartesian equation of the plane Π_3 is given by ax + by + cz = 1. (c) Given that Π_3 is parallel to the line L, show that a+2b-5c=0. [1] Consider the case that Π_3 contains L. - (d) (i) Show that 5a 7c = 4. - (ii) Given that Π_3 is equally inclined to both Π_1 and Π_2 , determine two distinct possible Cartesian equations for Π_3 . [9] Please **do not** write on this page. Answers written on this page will not be marked. 12FP12