Exam-style questions

11 P1: Consider the points given by the coordinates A(1, 0, 1), B(3, 0, 0), C(4, 2, 3).

- **a** Find the vector $\overrightarrow{AB} \times \overrightarrow{AC}$ (4 marks)
- **b** Find an exact value for the area of triangle ABC. (3 marks)
- **c** Show that the cartesian equation of the plane Π_1 which containing the triangle ABC is 2x-7y+4z=6 (3 marks)
- **d** A second plane is given by the equation Π_2 : 3x-5y+z=1. Find the line of intersection of the planes Π_1 and Π_2 (5 marks)

12 P1: A tetrahedron has vertices at the points A(1, 0, 1), B(-2, 2, 3), C(0, 4,2), D(3, 1, 3) relative to a fixed point O.

Find the volume of the tetrahedron.

(6 marks)

13 P1: In the given semicircle, AB is the diameter and P is a general point on the arc. O is the centre of AB.

It is also given that $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OP} = \mathbf{p}$.

By using the properties of the scalar product, prove that $A\hat{P}B = 90^{\circ}$.

(8 marks)

14 P1: Consider a point P(1, 0, 2) and the plane π : 4x - 3y + z = 19. Point Q is such that P and Q are equidistant from π , and the line PQ is perpendicular to π .

- **a** Determine the coordinates of Q. (6 marks)
- **b** Find the exact value of the distance PQ. (3 marks)

15 P1: The plane π has equation 4x + 3y - z = 14 and the line L has equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix}.$$

- **a** Given that L meets π at the point P, find the coordinates of P. (4 marks)
- **b** Find the shortest distance from the origin O to π . (4 marks)

16 P2: Points A,B,C,D have coordinates given by A(8,2,0), B(2,0,6), C(4,4,4) and D(12, 3, 0).

- **a** Find a vector equation of the line AB. (3 marks)
- **b** Find a vector equation of the line CD. (3 marks)
- **c** Hence, or otherwise, find the shortest distance between the lines AB and CD. (7 marks)

17 P1: A plane Π contains the point (5,8,0)

and the line
$$\mathbf{r} = \begin{pmatrix} 10 \\ -4 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
.

Find the equation of Π in the form ax + by + cz = 1, where a, b and c are constants. (12 marks)

18 P2: A line is given by the equation

=

$$\frac{x-1}{2} = \frac{y}{5} = \frac{z-5}{p}$$
 and a plane is given by

the equation 5x + py + pz = 8, where *p* is a constant.

Determine the value of *p* that maximises the angle between the line and the plane, and hence find the maximum acute angle between the line and the plane. Give your answer in degrees, correct to 1 decimal place. (10 marks)

19 P1: Determine whether or not the lines

19

$$L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$
and

$$L_2: \mathbf{r} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$
 are skew. (9 marks)

precisely to the unit vectors i, j, k. As we saw in (a), these can be written as the cosines of the angles. Hence

 $n = \cos \alpha i + \cos \beta j + \cos \gamma k$

Then the equation of the plane can be written as

 $x\cos\alpha + y\cos\beta + z\cos\gamma = 0$

We calculate the vectors 10 a

$$AP = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$$

$$AQ = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$$

These will be the two vectors on the plane equation. Additionally we take a point, choosing for simplicity A =(2,0,0). Then the plane equation in vector form is

$$p = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$$

To write it in Cartesian form, we write out the system of equations

$$x = 2 - \lambda - 2\mu$$

$$y = 2\lambda + \mu$$

$$z = 4\lambda + 4\mu$$

We subtract the third one from twice the second one. to get

$$z - 2y = 2\mu$$

so $\mu = \frac{z-2y}{2}$ and we add the

second one to twice the first one, to get

$$y + 2x = 4 + 2\lambda - 2\lambda + \mu - 4\mu$$

or equivalently

$$y + 2x = 4 - 3\mu$$

Then we substitute with our value for μ to get

$$y + 2x = 4 - 3\left(\frac{z - 2y}{2}\right)$$

This simplifies to

$$4x - 4y + 3z = 8$$

b using the equation of the plane written in a. BG gives the direction vector of the line.

$$BG = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 4 \end{pmatrix}$$

Then the equation of the line is written as

$$\boldsymbol{p} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} - \lambda \begin{pmatrix} -2 \\ -2 \\ 4 \end{pmatrix}$$

c Angle between plane

$$4x - 4y + 3z = 8$$
 and line

$$\boldsymbol{p} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} - \lambda \begin{pmatrix} -2 \\ -2 \\ 4 \end{pmatrix}$$

We have that

$$\sin \theta = \frac{|d \cdot n|}{|d||n|}$$

$$= \frac{\left| (-2)(4) + (-2)(-4) + (4)(3) \right|}{\sqrt{2^2 + 2^2 + 4^2} \sqrt{4^2 + 4^2 + 3^2}}$$

$$=\frac{12}{2\sqrt{246}}=\frac{6}{\sqrt{246}}$$

Then

$$\theta = 22.5^{\circ}$$

Exam-style questions

11 a
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$
 (1 mark)

$$\overline{AC} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$
 (1 mark)

$$\overline{AB} \times \overline{AC} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$
(1 mark)

$$= \begin{pmatrix} 2 \\ -7 \\ 4 \end{pmatrix}$$
 (1 mark)

b
$$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{2^2 + (-7)^2 + 4^2} = \frac{31}{6} \text{ units}^2.$$
(2 marks)

$$=\frac{\sqrt{69}}{2}$$
 (1 mark)

$$\mathbf{c} \quad \mathbf{r} \cdot \begin{pmatrix} 2 \\ -7 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -7 \\ 4 \end{pmatrix}$$
(2 marks)

$$\mathbf{r}.\begin{pmatrix} 2\\ -7\\ 4 \end{pmatrix} = 6 \qquad (1 \text{ mark})$$

$$2x - 7y + 4z = 6$$

$$\mathbf{d} \quad \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -7 \\ 4 \end{pmatrix} = \begin{pmatrix} -13 \\ -10 \\ -11 \end{pmatrix}$$
(2 marks)

$$\mathbf{n} = \begin{pmatrix} 13 \\ 10 \\ 11 \end{pmatrix}$$

$$y = 0 \Rightarrow x = -\frac{1}{5}, z = \frac{8}{5}$$

(or equivalent) (2 marks)

$$\mathbf{r} = \begin{pmatrix} -\frac{1}{5} \\ 0 \\ \frac{8}{5} \end{pmatrix} + \lambda \begin{pmatrix} 13 \\ 10 \\ 11 \end{pmatrix}$$

(or equivalent) (1 mark)

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} -2 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$$

$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

$$AB \times AC = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \times \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$(1 \text{ mark})$$

$$= \frac{1}{6} |\overrightarrow{AB}.\overrightarrow{AC} \times \overrightarrow{AD}| = \frac{1}{6} \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}. \begin{bmatrix} 7 \\ 4 \\ -9 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ -7 \\ 4 \end{bmatrix}$$

$$= \frac{1}{6} |(-21 + 8 - 18)|$$

$$(2 \text{ marks})$$

$$=\frac{1}{6}|(-21+8-18)|$$

$$= \frac{31}{6} \text{ units}^2.$$
 (1 mark)

$$\overrightarrow{AP} = \mathbf{p} - \mathbf{a}$$

(1 mark)

$$\overrightarrow{BP} = \mathbf{p} - \mathbf{b}$$

(1 mark)

$$\overrightarrow{AP}.\overrightarrow{BP} = (p-a).(p-b)$$

(1 mark)

$$= (\mathbf{p} - \mathbf{a}) \cdot (\mathbf{p} + \mathbf{a})$$

(1 mark)

$$= p \cdot p - a \cdot p + a \cdot p - a \cdot a$$

(1 mark)

$$= \mathbf{p} \cdot \mathbf{p} - \mathbf{a} \cdot \mathbf{a}$$

(1 mark)

$$= |\mathbf{p}|^2 - |\mathbf{a}|^2$$

(I mark)

$$= 0$$
 since $|\mathbf{p}| = |\mathbf{a}|$

(1 mark)

Therefore AP is perpendicular to \overrightarrow{BP} and $\angle APB = 90^{\circ}$

14 a Equation of line perpendicular to ∏ and passing through P is

$$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \quad (2 \text{ marks})$$

Attempting to solve

P and Π simultaneously: (1 mark)

$$4(1+4\lambda) - 3(-3\lambda) +$$

$$(2+\lambda)=19$$

$$4 + 16\lambda + 9\lambda + 2 + \lambda = 19$$

 $26\lambda + 6 = 19$

$$\lambda = \frac{1}{2}$$

(1 mark)

Therefore

$$\overline{OQ} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 2 \times \frac{1}{2} \times \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$$
(1 mark)

$$= \begin{pmatrix} 5 \\ -3 \\ 3 \end{pmatrix}$$
 (1 mark)

b Distance between P(1,0,2)and Q(5, -3,3) is given by

$$\sqrt{(5-1)^2 + (-3-0)^2 + (3-2)^2}$$
(2 marks)

$$=\sqrt{26}$$
 (1 mark)

15 a
$$4(1+6\lambda) + 3(5-2\lambda) - (-3+2\lambda) = 14$$
 (1 mark)

$$4 + 24\lambda + 15 - 6\lambda + 3 - 2\lambda$$

= 14

 $22 + 16\lambda = 14$

$$\lambda = -\frac{1}{2}$$
 (1 mark)

$$\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \\ -4 \end{pmatrix}$$
(2 marks)

So P(-2, 6, 4).

b
$$\begin{pmatrix} -2 \\ 6 \\ -4 \end{pmatrix}$$
 lies on the plane and

$$\mathbf{n} = \begin{pmatrix} 4 \\ 3 \\ -1 \end{pmatrix}$$
 (2 marks)

So distance

$$= \frac{\begin{pmatrix} -2\\6\\-4 \end{pmatrix} \cdot \begin{pmatrix} 4\\3\\-1 \end{pmatrix}}{\sqrt{4^2 + 3^2 + (-1)^2}}$$
 (1 mark)
$$= \frac{-8 + 18 + 4}{\sqrt{4^2 + 3^2 + (-1)^2}}$$

$$= \frac{14}{\sqrt{26}} \left(= \frac{14\sqrt{26}}{26} = \frac{7\sqrt{26}}{13} \right)$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} - \begin{pmatrix} 8 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ -2 \\ 6 \end{pmatrix}$$
(1 mark)

$$\mathbf{r} = \begin{pmatrix} 8 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -6 \\ -2 \\ 6 \end{pmatrix}$$
 (2 marks)

$$\sqrt{(5-1)^2 + (-3-0)^2 + (3-2)^2}$$
(2 marks)
$$\overline{CD} = \overline{OD} - \overline{OC} = \begin{pmatrix} 12 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \\ -4 \end{pmatrix}$$

$$\mathbf{r} = \begin{pmatrix} 10 \\ -4 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 11 \\ -2 \\ 5 \end{pmatrix}$$
(1 mark)

15 a
$$4(1+6\lambda) + 3(5-2\lambda) - (-3+2\lambda) = 14$$
 (1 mark) $\mathbf{r} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 8 \\ -1 \\ 4 \end{pmatrix}$ (2 marks)

c Direction vectors are
$$\begin{pmatrix} -6 \\ -2 \\ 6 \end{pmatrix}$$

and
$$\begin{pmatrix} 8 \\ -1 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} -6 \\ -2 \\ 6 \end{pmatrix} \times \begin{pmatrix} 8 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 72 \\ 22 \end{pmatrix}$$
(2 marks)

(8, 2, 0) lies on AB and (4, 4, 4) lies on CD

$$\overrightarrow{AC} = \begin{pmatrix} -4\\2\\4 \end{pmatrix}$$
 (1 mark)

Projection of AC to

the vector
$$\begin{pmatrix} -2\\72\\22 \end{pmatrix}$$
 is

$$\frac{\begin{pmatrix} -4\\2\\4 \end{pmatrix} \cdot \begin{pmatrix} -2\\72\\22 \end{pmatrix}}{\sqrt{(-2)^2 + 72^2 + 22^2}}$$

$$= \frac{8+144+88}{\sqrt{(-2)^2+72^2+22^2}}$$
 (1 mark)

$$=\frac{240}{\sqrt{5672}}\tag{1 mark}$$

$$= \frac{240}{\sqrt{5672}}$$
 (1 mark)
$$\left(= \frac{240\sqrt{5672}}{5672} = \frac{480\sqrt{1418}}{5672} \right)$$

$$=\frac{60\sqrt{1418}}{709}\left(=3.19\right)$$

17 Choosing $\lambda = 1$ (say), gives

$$\mathbf{r} = \begin{pmatrix} 10 \\ -4 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 11 \\ -2 \\ 5 \end{pmatrix}$$
(1 mark)

Therefore A(5, 8, 0), B(10, -4, 4)and C(11, -2,5) lie on Π (2 marks)

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ -12 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{AC} = \begin{pmatrix} 6 \\ -10 \\ 5 \end{pmatrix}$

$$\overline{AB} \times \overline{AC} = \begin{pmatrix} 5 \\ -12 \\ 4 \end{pmatrix} \times \begin{pmatrix} 6 \\ -10 \\ 5 \end{pmatrix} = \begin{pmatrix} -20 \\ -1 \\ 22 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \neq k \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \text{ so } L_1 \text{ and } L_2 \text{ are}$$

$$(2 \text{ marks}) \qquad \text{not parallel}. \qquad (2 \text{ marks})$$

So equation of plane is

$$\mathbf{r} \cdot \begin{pmatrix} -20 \\ -1 \\ 22 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -20 \\ -1 \\ 22 \end{pmatrix}$$

(2 marks)

$$\mathbf{r}.\begin{pmatrix} -20\\ -1\\ 22 \end{pmatrix} = -108 \qquad (1 \text{ mark})$$

$$-20x - y + 22z = -108$$
 (1 mark)

$$\frac{20}{108}x + \frac{1}{108}y - \frac{22}{108}z = 1$$
 (1 mark

$$\left(\frac{5}{27}x + \frac{1}{108}y - \frac{11}{54}z = 1\right)$$

18 Direction vector of line is

(1 mark)

Direction normal to plane is |p|

(1 mark)

If the angle between the line and the plane is θ , then

$$\sin \theta = \frac{\binom{2}{5} \binom{5}{p}}{\sqrt{2^2 + 5^2 + p^2} \sqrt{5^2 + p^2 + p^2}}$$
(3 marks)

(3 marks)
$$= \frac{10 + 5p + p^{2}}{\sqrt{2^{2} + 5^{2} + p^{2}} \sqrt{5^{2} + p^{2} + p^{2}}}$$
2 Re(z₁) = 2, Im(z₁) = $\frac{2}{3}$,
(1 mark)
$$Re(z_{1}) = \frac{3}{3} Im(z_{1}) = \frac$$

 θ is maximum when $\sin\theta$ is maximum. (1 mark)

By GDC, maximum occurs when p = 6.797

So maximum value of $\sin \theta$ is

 $\Rightarrow \theta_{\text{MAX}} = 73.7^{\circ}$ (1 mark)

$$\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \neq k \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \text{ so } L_1 \text{ and } L_2 \text{ are}$$

Consider i and j components: (1 mark)

$$1 + 3\lambda = 2 + \mu$$
 and $-\lambda = 1 - \mu$ (1 mark)

Solving simultaneously:

(1 mark)

(2 marks)

$$\lambda = 1$$
, $\mu = 2$ (1 mark)

Substitute into **k** component: (1 mark)

$$2 + \lambda = 1 + \mu$$
, $2 + 1 = 1 + 2$ (so equations are consistent).

Therefore L_1 and L_2 intersect at the point where $\lambda = 1$ and μ = 2, so are not skew.

(1 mark)

Chapter 10

Skills check

2 Re
$$(z_1) = 2$$
, Im $(z_1) = \frac{2}{3}$,

$$\text{Re}(z_2) = -\frac{3}{4}, \text{Im}(z_2) = -1,$$

$$\operatorname{Re}(z_3) = \frac{1}{2}, \operatorname{Im}(z_3) = -\frac{3}{2}.$$

(1 mark) **3 a**
$$1-13i$$
 b $-\frac{17}{4}-\frac{7}{4}i$

4 **a** $z^* = 2 + 3i, -z = -2 + 3i,$

$$\frac{1}{z} = \frac{2}{13} + \frac{3}{13} i, |z| = \sqrt{13}$$

b $z^* = \frac{4}{5} - \frac{3}{5}i, -z = -\frac{4}{5} - \frac{3}{5}i,$

$$\frac{1}{z} = \frac{4}{5} - \frac{3}{5}i, |z| = 1$$

Exercise 10A

- 2 a $2\operatorname{cis}\left(\frac{\pi}{4}\right)$ b $\frac{3}{2}\operatorname{cis}\left(\frac{\pi}{2}\right)$
 - **c** $5 \operatorname{cis} \left(-\pi + \arctan \left(\frac{3}{4} \right) \right)$
 - d $29 \operatorname{cis} \left(-\arctan\left(\frac{20}{21}\right) \right)$
 - e $2\operatorname{cis}\left(\frac{2\pi}{3}\right)$ f $\frac{4}{3}\operatorname{cis}\left(\frac{3\pi}{2}\right)$
 - g $\frac{5\sqrt{2}}{12}$ cis $\left[-\arctan\left(\frac{3}{4}\right)\right]$
 - **4 a** $\frac{7}{12} \text{cis} \frac{\pi}{9}$ **b** $\frac{7}{12} \text{cis} \left(-\frac{\pi}{9}\right)$
 - c $-\frac{7}{12}$ cis $\left(-\frac{\pi}{9}\right)$

Exercise 10B

- **1 a** $8e^{i\frac{7\pi}{12}}$ **b** $30cis(135^{\circ})$
 - c $\frac{5}{9}e^{i\left(\frac{45}{14}\pi\right)}$ d cis(135°)
- 2 a $-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}$ b $e^{i\frac{2\pi}{3}}$
 - c $\frac{-\sqrt{6}+\sqrt{2}}{4}-\frac{\sqrt{6}+\sqrt{2}}{4}i$
 - d See answer to part c.