

Markscheme

May 2018

Mathematics

Higher level

Paper 1

17 pages

Section A

1.	1 – atter	npt to substitute $x = -1$ or $x = 2$ or to divide polynomials $p - q + 5 = 7$, $16 + 8p + 2q + 5 = 1$ or equivalent npt to solve their two equations -3 , $q = 2$	(M1) A1A1 M1 A1	[5 marks]
				[5 11181 KS]
2.	(a)	attempt at chain rule or product rule	(M1)	
		$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\sin\theta\cos\theta$	A1	
		u <i>0</i>		[2 marks]
	(b)	$2\sin\theta\cos\theta = 2\sin^2\theta$		
		$\sin\theta = 0$	(A1)	
		$\theta = 0, \pi$	A1	
		obtaining $\cos \theta = \sin \theta$ $\tan \theta = 1$	(M1) (M1)	
			(M1)	
		$\theta = \frac{\pi}{4}$	A1	
				[5 marks]
			Tota	l [7 marks]
3.	(a)	$a = \frac{3}{16}$ and $b = \frac{5}{16}$	(M1)A1A1	
				[3 marks]

Note: Award *M1* for consideration of the possible outcomes when rolling the two dice.

Question 3 continued

(b)
$$E(T) = \frac{1+6+15+28}{16} = \frac{25}{8} (= 3.125)$$
 (M1)A1
Note: Allow follow through from part (a) even if probabilities do not add up to 1.
[2 marks]

4. (a)
$$\int_{-2}^{0} f(x) dx = 10 - 12 = -2$$
 (M1)(A1)
 $\int_{-2}^{0} 2 dx = [2x]_{-2}^{0} = 4$ A1

$$\int_{-2}^{0} (f(x)+2) dx = 2$$
 A1 [4 marks]

(b)
$$\int_{-2}^{0} f(x+2) dx = \int_{0}^{2} f(x) dx$$
 (M1)
=12 [2 marks]

Total [6 marks]

5.
$$(\ln x)^2 - (\ln 2)(\ln x) - 2(\ln 2)^2 (= 0)$$

EITHER

$$\ln x = \frac{\ln 2 \pm \sqrt{(\ln 2)^2 + 8(\ln 2)^2}}{2}$$

$$= \frac{\ln 2 \pm 3 \ln 2}{2}$$
A1

OR

$(\ln x - 2\ln 2)(\ln x + \ln 2)(=0)$	M1A1
---------------------------------------	------

THEN

$\ln x = 2 \ln 2$ or $-\ln 2$	A1
$\Rightarrow x = 4 \text{ or } x = \frac{1}{2}$	(M1)A1

Note: (*M1*) is for an appropriate use of a log law in either case, dependent on the previous *M1* being awarded, *A1* for both correct answers.

solution is
$$\frac{1}{2} < x < 4$$
 A1 [6 marks]

6. if n = 1

LHS = 1; RHS =
$$4 - \frac{3}{2^0} = 4 - 3 = 1$$
 M1
hence true for $n = 1$
assume true for $n = k$ M1

Note: Assumption of truth must be present. Following marks are not dependent on the first two *M1* marks. 3 k = 1

so
$$1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \dots + k\left(\frac{1}{2}\right)^{k-1} = 4 - \frac{k+2}{2^{k-1}}$$

if $n = k+1$
 $1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \dots + k\left(\frac{1}{2}\right)^{k-1} + (k+1)\left(\frac{1}{2}\right)^k$
 $= 4 - \frac{k+2}{2^{k-1}} + (k+1)\left(\frac{1}{2}\right)^k$ M1A1
finding a common denominator for the two fractions M1

finding a common denominator for the two fractions

$$=4 - \frac{2(k+2)}{2^{k}} + \frac{k+1}{2^{k}}$$
$$=4 - \frac{2(k+2) - (k+1)}{2^{k}} = 4 - \frac{k+3}{2^{k}} \left(= 4 - \frac{(k+1)+2}{2^{(k+1)-1}} \right)$$
A1

hence if true for n = k then also true for n = k+1, as true for n = 1, so true (for all $n \in \mathbb{Z}^+$)

Note: Award the final *R1* only if the first four marks have been awarded.

[7 marks]

R1

– 10 –

7. (a)
$$y = \arccos\left(\frac{x}{2}\right) \Rightarrow \frac{dy}{dx} = -\frac{1}{2\sqrt{1-\left(\frac{x}{2}\right)^2}} \left(= -\frac{1}{\sqrt{4-x^2}} \right)$$
 M1A1
Note: M1 is for use of the chain rule.
(b) attempt at integration by parts $M1$
 $u = \arccos\left(\frac{x}{2}\right) \Rightarrow \frac{du}{dx} = -\frac{1}{\sqrt{4-x^2}}$
 $\frac{dv}{dx} = 1 \Rightarrow v = x$ (A1)
 $\int_0^1 \arccos\left(\frac{x}{2}\right) dx = \left[x \arccos\left(\frac{x}{2}\right)\right]_0^1 + \int_0^1 \frac{x}{\sqrt{4-x^2}} dx$ A1
using integration by substitution or inspection (M1)
 $\left[x \arccos\left(\frac{x}{2}\right)\right]_0^1 + \left[-\left(4-x^2\right)^{\frac{1}{2}}\right]_0^1$ A1
Note: Award A1 for $-\left(4-x^2\right)^{\frac{1}{2}}$ or equivalent.

_

Note: Condone lack of limits to this point.
attempt to substitute limits into their integral
$$= \frac{\pi}{3} - \sqrt{3} + 2$$

s]

[7 marks]

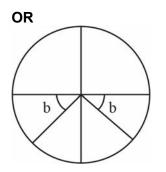
Total [9 marks]

М1 A1 $8. \quad \sin 2x = -\sin b$

EITHER

$$\sin 2x = \sin(-b)$$
 or $\sin 2x = \sin(\pi + b)$ or $\sin 2x = \sin(2\pi - b)...$ (M1)(A1)

Note: Award *M1* for any one of the above, *A1* for having final two.



(M1)(A1)

Note: Award *M1* for one of the angles shown with b clearly labelled, *A1* for both angles shown. Do not award *A1* if an angle is shown in the second quadrant and subsequent *A1* marks not awarded.

THEN

$2x = \pi + b \text{ or } 2x = 2\pi - b$	(A1)(A1)
$x = \frac{\pi}{2} + \frac{b}{2}, \ x = \pi - \frac{b}{2}$	A1

[5 marks]

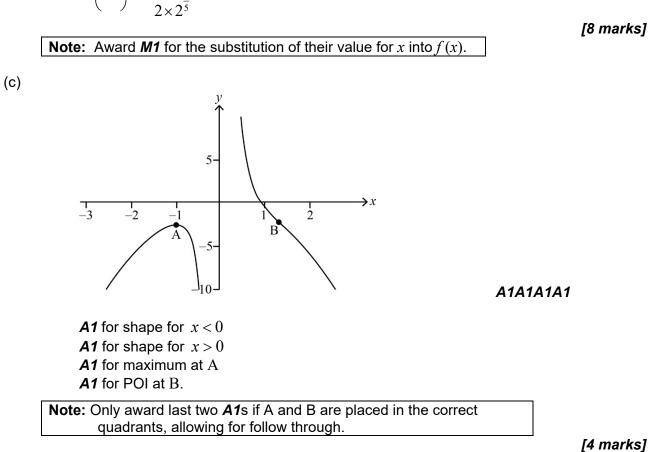
Section B

	Section D	
. (a) attempt to diff	ferentiate	(M1)
$f'(x) = -3x^{-4}$	-3x	A1
	for example $f'(x) = \frac{-15x^4 \times 2x^3 - 6x^2(2-x^3)^2}{(2x^3)^2}$	
$-\frac{3}{x^4} - 3x = 0$		М1
$\Rightarrow x^5 = -1 \Rightarrow$	x = -1	A1
$A\left(-1,-\frac{5}{2}\right)$		A1
(2)		[5 mar
(b) (i) $f''(x) =$	= 0	M1
$f^{\prime\prime}(x)$ =	$=12x^{-5}-3(=0)$	A1
	d A1 for correct derivative seen even if not s	implified.
$\Rightarrow x = 5$	$\sqrt[5]{4}\left(=2^{\frac{2}{5}}\right)$	A1
hence (at most) one point of inflexion	R1
	nark is independent of the two A1 marks abo red their equation has only one solution this i	
$f^{\prime\prime}(x)$ C	hanges sign at $x = \sqrt[5]{4} \left(= 2^{\frac{2}{5}} \right)$	R1
so exac	tly one point of inflexion	

Question 9 continued

(ii)
$$x = \sqrt[5]{4} = 2^{\frac{2}{5}} \left(\Rightarrow a = \frac{2}{5} \right)$$
 A1

$$f\left(2^{\frac{2}{5}}\right) = \frac{2 - 3 \times 2^{2}}{2 \times 2^{\frac{6}{5}}} = -5 \times 2^{-\frac{6}{5}} \ (\Longrightarrow b = -5) \tag{M1)A1}$$



Total [17 marks]

for example,
$$\vec{AB} \times \vec{AD} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \times \begin{pmatrix} -1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
 (A1)

$$\Pi_1: x + z = 1$$
 A1

(b) **EITHER**

$$\begin{pmatrix} 1\\0\\1 \end{pmatrix} \bullet \begin{pmatrix} 0\\1\\1 \end{pmatrix} = 1 = \sqrt{2}\sqrt{2}\cos\theta$$
 M1A1

OR

$$\begin{pmatrix} 1\\0\\1 \end{pmatrix} \times \begin{pmatrix} 0\\1\\1 \end{pmatrix} = \sqrt{3} = \sqrt{2}\sqrt{2}\sin\theta$$
 M1A1

Note: *M1* is for an attempt to find the scalar or vector product of the two normal vectors.

$$\Rightarrow \theta = 60^{\circ} \left(= \frac{\pi}{3} \right)$$
 A1

angle between faces is $120^{\circ} \left(= \frac{2\pi}{3} \right)$ A1

[4 marks]

(c)
$$\overrightarrow{DB} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 or $\overrightarrow{BD} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ (A1)
 $\Pi_3 : x + y - z = k$ (M1)

$$\Pi_3: x+y-z=0 A1$$

[3 marks]

Question 10 continued

(d) METHOD 1

$\begin{pmatrix} 0 \end{pmatrix}$	$\left(1 \right)$	
line AD: $(\mathbf{r} =) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$\left + \lambda \right = 0$	M1A1
(1)) (-1)	

intersects Π_3 when $\lambda - (1 - \lambda) = 0$ M1so $\lambda = \frac{1}{2}$ A1hence P is the midpoint of ADAG

METHOD 2

midpoint of AD is $(0.5, 0, 0.5)$ substitute into $x + y - z = 0$	(M1)A1 M1
0.5 + 0 - 0.5 = 0	A1
hence P is the midpoint of AD	AG

[4 marks]

(e) METHOD 1

$OP = \frac{1}{\sqrt{2}}$, $O\hat{P}Q = 90^\circ$, $O\hat{Q}P = 60^\circ$	A1A1A1
$PQ = \frac{1}{\sqrt{6}}$	A1
area $=\frac{1}{2\sqrt{12}}=\frac{1}{4\sqrt{3}}=\frac{\sqrt{3}}{12}$	A1

[5 marks]

Question 10 continued

METHOD 2

line BD:
$$(\mathbf{r} =) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

 $\Rightarrow \lambda = \frac{2}{3}$ (A1)
 $\vec{OQ} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$ A1
 $area = \frac{1}{2} |\vec{OP} \times \vec{OQ}|$ M1
 $\vec{OP} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$ A1
Note: This A1 is dependent on M1.
 $area = \frac{\sqrt{3}}{12}$ A1
[5 marks]
Total [19 marks]

11. (a) (i)
$$w^2 = 4cis\left(\frac{2\pi}{3}\right); w^3 = 8cis(\pi)$$
 (M1)A1A1
Note: Accept Euler form.
Note: M1 can be awarded for either both correct moduli or both correct arguments.
Note: Allow multiplication of correct Cartesian form for M1, final answers must be in modulus-argument form.
(i)
 $u^{y^2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$

– 17 –