

Markscheme

May 2018

Mathematics

Higher level

Paper 1

17 pages

Section A

1.
$$\cos \theta = \frac{(3i-4j-5k) \cdot (5i-4j+3k)}{|3i-4j-5k||5i-4j+3k|}$$
 (M1)
= $\frac{16}{\sqrt{50}\sqrt{50}}$ A1A1

Note: *A1* for correct numerator and *A1* for correct denominator.

$$=\frac{8}{25}\left(=\frac{16}{50}=0.32\right)$$
 A1

[4 marks]

2. (a)

	[3 marks]
A1	
A1	
A1	

A1

Question 2 continued

(b) METHOD 1

attempt to solve
$$\frac{x}{2} + 1 = x - 2$$
 (M1)

$$x = 6$$

Note: Accept
$$x = 6$$
 using the graph.
attempt to solve (algebraically) $\frac{x}{2} + 1 = 2 - x$ M1

$$x = \frac{2}{3}$$
 A1

METHOD 2

$$\left(\frac{x}{2}+1\right)^{2} = (x-2)^{2}$$
M1

$$\frac{x^{2}}{4}+x+1 = x^{2}-4x+4$$

$$0 = \frac{3x^{2}}{4}-5x+3$$

$$3x^{2}-20x+12 = 0$$
attempt to factorise (or equivalent)
$$(3x-2)(x-6) = 0$$

$$x = \frac{2}{3}$$
A1
x = 6
A1
[4 marks]

Total [7 marks]

3. (a) equating sum of probabilities to 1 ($p + 0.5 - p + 0.25 + 0.125 + p^3 = 1$) M1 $p^3 = 0.125 = \frac{1}{2}$

$$p = 0.5$$
 A1 [2 marks]

(b) (i)
$$\mu = 0 \times 0.5 + 1 \times 0 + 2 \times 0.25 + 3 \times 0.125 + 4 \times 0.125$$
 M1
= 1.375 $\left(=\frac{11}{8}\right)$ A1

Question 3 continued

(ii)
$$P(X > \mu) = P(X = 2) + P(X = 3) + P(X = 4)$$
 (M1)
= 0.5 A1
Note: Do not award follow through **A** marks in (b)(i) from an incorrect value of *p*.
Note: Award **M** marks in both (b)(i) and (b)(ii) provided no negative probabilities, and provided a numerical value for μ has been found.

[4 marks]

Total [6 marks]

valid attempt to find $\frac{dy}{dx}$	M1	
$\frac{dy}{dx} = \frac{1}{(1-x)^2} - \frac{4}{(x-4)^2}$	A1A1	
attempt to solve $\frac{dy}{dx} = 0$	М1	
x = 2, x = -2	A1A1	
	[6 marks]

5. (a) **METHOD 1**

4.

state that $u_n = u_1 r^{n-1}$ (or equivalent)	A1
attempt to consider a_n and use of at least one log rule	М1
$\log_2 u_n = \log_2 u_1 + (n-1)\log_2 r $	A1
(which is an AP) with $ d = \log_2 r $ (and 1 st term $ \log_2 u_1^{} $)	A1
so A is an arithmetic sequence	AG
Note: Condone absence of modulus signs.	
Note: The final A mark may be awarded independently.	
Note: Consideration of the first two or three terms only will score <i>MO</i> .	
	[4 m

[4 marks]

Question 5 continued

6.

METHOD 2 consideration of $(d =) a_{n+1} - a_n$ М1 $(d) = \log_2 |u_{n+1}| - \log_2 |u_n|$ $(d) = \log_2 \left| \frac{u_{n+1}}{u_n} \right|$ М1 $(d) = \log_2 |r|$ A1 which is constant **R1** Note: Condone absence of modulus signs. Note: the final A mark may be awarded independently. Note: Consideration of the first two or three terms only will score MO. attempting to solve $\frac{3}{1-r} = 4$ (b) М1 $r = \frac{1}{4}$ A1 d = -2A1 [3 marks] Total [7 marks] (a) (i) attempt at product rule М1 $f'(x) = -e^{-x}\sin x + e^{-x}\cos x$ A1 (ii) $g'(x) = -e^{-x}\cos x - e^{-x}\sin x$ A1 [3 marks] (b) **METHOD 1** Attempt to add f'(x) and g'(x)(M1) $f'(x) + g'(x) = -2e^{-x}\sin x$ A1 $\int_{0}^{\pi} e^{-x} \sin x \, dx = \left[-\frac{e^{-x}}{2} \left(\sin x + \cos x \right) \right]_{0}^{\pi} \text{ (or equivalent)}$ A1 **Note:** Condone absence of limits. $=\frac{1}{2}\left(1+e^{-\pi}\right)$ A1

Question 6 continued

METHOD 2

$$I = \int e^{-x} \sin x dx$$

= $-e^{-x} \cos x - \int e^{-x} \cos x dx$ OR = $-e^{-x} \sin x + \int e^{-x} \cos x dx$ M1A1
= $-e^{-x} \sin x - e^{-x} \cos x - \int e^{-x} \sin x dx$
 $I = -\frac{1}{2}e^{-x}(\sin x + \cos x)$ A1

$$\int_{0}^{\pi} e^{-x} \sin x dx = \frac{1}{2} \left(1 + e^{-\pi} \right)$$
 A1

[4 marks]

Total [7 marks]

7. (a)
$$\frac{z+w}{z-w} = \frac{(a+c) + i(b+d)}{(a-c) + i(b-d)}$$
$$= \frac{(a+c) + i(b+d)}{(a-c) + i(b-d)} \times \frac{(a-c) - i(b-d)}{(a-c) - i(b-d)}$$
M1A1
real part =
$$\frac{(a+c)(a-c) + (b+d)(b-d)}{(a-c)^2 + (b-d)^2} \left(= \frac{a^2 - c^2 + b^2 - d^2}{(a-c)^2 + (b-d)^2} \right)$$
A1A1

Note: Award A1 for numerator, A1 for denominator.

[4 marks]

(b) $|z| = |w| \Rightarrow a^2 + b^2 = c^2 + d^2$ hence real part = 0 A1

Note: Do not award *R0A1*.

[2 marks]

Total [6 marks]

8. (a)
$$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$$
 (accept $du = \frac{1}{2}x^{-\frac{1}{2}}dx$ or equivalent) A1
substitution, leading to an integrand in terms of u M1

$$\int \frac{2u du}{u^3 + u} \text{ or equivalent}$$
 A1

$$= 2 \arctan(\sqrt{x})(+c)$$
 A1

[4 marks]

Question 8 continued

(b)
$$\frac{1}{2} \int_{1}^{9} \frac{dx}{x^{\frac{3}{2}} + x^{\frac{1}{2}}} = \arctan 3 - \arctan 1$$
 A1
 $\tan(\arctan 3 - \arctan 1) = \frac{3 - 1}{1 + 3 \times 1}$ (M1)
 $\tan(\arctan 3 - \arctan 1) = \frac{1}{2}$
 $\arctan 3 - \arctan 1 = \arctan \frac{1}{2}$ A1
[3 marks]

Total [7 marks]

Section B

– 13 –

9.	(a)	(i)	a pair of opposite sides have equal length and are parallel hence ABCD is a parallelogram	R1 AG
		(ii)	attempt to rewrite the given information in vector form $b-a=c-d$	M1 A1
			rearranging $d - a = c - b$	M1
			hence $\overrightarrow{AD} = \overrightarrow{BC}$	AG
Na	ta: C.	مصطنطح	the next competity encurrence next i) by encurring next ii) correctly and	then deducing them

Note: Candidates may correctly answer part i) by answering part ii) correctly and then deducing there are two pairs of parallel sides. [4 marks]

(b) **EITHER**

use of $\vec{AB} = \vec{DC}$	(M1)
$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} q+1 \end{pmatrix}$	
$\begin{vmatrix} -3 \end{vmatrix} = \begin{vmatrix} 1-r \end{vmatrix}$	A1A1
(p+3) (4)	

OR

use of $\overrightarrow{AD} = \overrightarrow{BC}$	(M1)
$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} q-3 \end{pmatrix}$	
$\left r-2 \right = \left 2 \right $	A1A1
$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2-p \end{pmatrix}$	

THEN

attempt to compare coefficients of i , j , and k in their equation or statement		
to that effect	M1	
clear demonstration that the given values satisfy their equation	A1	
p = 1, q = 1, r = 4	AG	
	[5 mar	rks]

(c) attempt at computing
$$\vec{AB} \times \vec{AD}$$
 (or equivalent)
 $\begin{pmatrix} -11 \end{pmatrix}$

-10	A1
(-2)	

area =
$$\left| \overrightarrow{AB} \times \overrightarrow{AD} \right| \left(= \sqrt{225} \right)$$
 (M1)
= 15 A1

[4 marks]

М1

Question 9 continued

(d) valid attempt to find
$$\overrightarrow{OM} \left(= \frac{1}{2} (a + c) \right)$$
 (M1)
$$\begin{pmatrix} 1 \\ \frac{3}{2} \\ -\frac{1}{2} \end{pmatrix}$$
 A1

the equation is (1) (11)

$$\boldsymbol{r} = \begin{pmatrix} 1\\ \frac{3}{2}\\ -\frac{1}{2} \end{pmatrix} + t \begin{pmatrix} 11\\ 10\\ 2 \end{pmatrix} \text{ or equivalent}$$
 M1A1

Note: Award maximum *M1A0* if $\mathbf{r} = ... \mathbf{r}$ (or equivalent) is not seen.

(e) attempt to obtain the equation of the plane in the form ax + by + cz = d M1 11x + 10y + 2z = 25 A1A1

Note: A1 for right hand side, A1 for left hand side.

- (f) (i) putting two coordinates equal to zero (M1) $X\left(\frac{25}{11}, 0, 0\right), Y\left(0, \frac{5}{2}, 0\right), Z\left(0, 0, \frac{25}{2}\right)$ A1
 - (ii) $YZ = \sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{25}{2}\right)^2}$ *M1*

$$=\sqrt{\frac{325}{2}} \left(= \frac{5\sqrt{104}}{4} = \frac{5\sqrt{26}}{2} \right)$$
 A1

[4 marks]

[4 marks]

[3 marks]

Total [24 marks]

М1

10. (a) attempt to make x the subject of $y = \frac{ax+b}{cx+d}$

$$y(cx+d) = ax + b$$

$$x = \frac{dy-b}{dt}$$
A1

– 15 –

$$a - cy$$

$$f^{-1}(x) = \frac{dx - b}{a - cx},$$
A1

Note: Do not allow y = in place of $f^{-1}(x)$.

$$x \neq \frac{a}{c}, \quad (x \in \mathbb{R})$$
 A1

Note: The final **A** mark is independent.

[5 marks]

third quadrant blank, including vertical asymptote x = 2horizontal asymptote y = 2(3) (3)

intercepts $\left(\frac{3}{2}, 0\right), \left(0, \frac{3}{2}\right)$ A1

[5 marks]

Question 10 continued

(c) the domain of $h \circ g$ is $x \le \frac{3}{2}$, x > 2the range of $h \circ g$ is $y \ge 0$, $y \ne \sqrt{2}$ **A1A1 A1A1 [4 marks]**

Total [14 marks]

11. (a) METHOD 1

 $\log_{r^{2}} x = \frac{\log_{r} x}{\log_{r} r^{2}} \left(= \frac{\log_{r} x}{2\log_{r} r} \right)$ $= \frac{\log_{r} x}{2}$ AG

[2 marks]

[2 marks]

METHOD 2

 $\log_{r^{2}} x = \frac{1}{\log_{x} r^{2}}$ $= \frac{1}{2\log_{x} r}$ $= \frac{\log_{r} x}{2}$ A1
A2

(b) METHOD 1

- $log_{2} y + log_{4} x + log_{4} 2x = 0$ $log_{2} y + log_{4} 2x^{2} = 0$ *M*1
- $\log_2 y + \frac{1}{2}\log_2 2x^2 = 0$ M1
- $\log_{2} y = -\frac{1}{2}\log_{2} 2x^{2}$ $\log_{2} y = \log_{2} \left(\frac{1}{\sqrt{2}x}\right)$ M1A1 $y = \frac{1}{\sqrt{2}}x^{-1}$ A1

Note: For the final **A** mark, y must be expressed in the form px^q .

[5 marks]

Question 11 continued

METHOD 2

$$\log_2 y + \log_4 x + \log_4 2x = 0$$

$$\log_2 y + \frac{1}{2}\log_2 x + \frac{1}{2}\log_2 2x = 0$$
 M1

$$\log_2 y + \log_2 x^{\frac{1}{2}} + \log_2 \left(2x\right)^{\frac{1}{2}} = 0$$
 M1

$$\log_2\left(\sqrt{2}xy\right) = 0$$
M1

$$\sqrt{2}xy = 1$$

$$y = \frac{1}{\sqrt{2}}x^{-1}$$
A1

$$y = \frac{1}{\sqrt{2}} x^{-1}$$

Note: For the final **A** mark, y must be expressed in the form px^{q} .

[5 marks]

(c) the area of R is
$$\int_{1}^{\alpha} \frac{1}{\sqrt{2}} x^{-1} dx$$
 M1

$$= \left[\frac{1}{\sqrt{2}}\ln x\right]_{1}^{\alpha}$$

$$= \frac{1}{\sqrt{2}}\ln \alpha$$
A1

$$-\frac{1}{\sqrt{2}} \ln \alpha = \sqrt{2}$$

$$M1$$

$$\alpha = e^{2}$$
A1

Note: Only follow through from part (b) if *y* is in the form $y = px^{q}$.

[5 marks]

Total [12 marks]