

Markscheme

May 2018

Mathematics

Higher level

Paper 2

18 pages

Note: Accept answers that round to the correct 2sf unless otherwise stated in the markscheme.

Section A

1. (a)
$$z = \frac{(2+7i)}{(6+2i)} \times \frac{(6-2i)}{(6-2i)}$$
 (M1)

$$=\frac{26+38i}{40}\left(=\frac{13+19i}{20}=0.65+0.95i\right)$$
 A1
[2 marks]

(b) attempt to use
$$|z| = \sqrt{a^2 + b^2}$$
 (M1)

$$|z| = \sqrt{\frac{53}{40}} \left(= \frac{\sqrt{530}}{20} \right) \text{ or equivalent}$$

[2 marks]

(c) **EITHER**

$$\arg z = \arg(2+7i) - \arg(6+2i)$$
 (M1)

OR

$$\arg z = \arctan\left(\frac{19}{13}\right) \tag{M1}$$

THEN

$\arg z = 0.9707$ (radians) (= 55.6197 degrees)	A1
Note: Only award the last A1 if 4 decimal places are given.	

[2 marks]

Total [6 marks]

2. METHOD 1

substitute each of $x = 1, 2$ and 3 into the quartic and equate to zero	(M1)
p + q + r = -7	
4p+2q+r=-11 or equivalent	(A2)
9p + 3q + r = -29	
Note: Award A2 for all three equations correct, A1 for two correct.	
attempting to solve the system of equations	(M1)
p = -7, q = 17, r = -17	A1

Note: Only award *M1* when some numerical values are found when solving algebraically or using GDC.

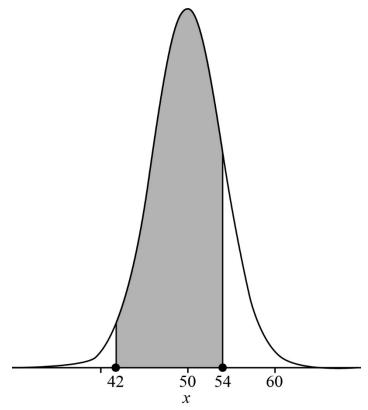
Question 2 continued

METHOD 2

attempt to find fourth factor $(x-1)$	(M1) A1
attempt to expand $(x-1)^2(x-2)(x-3)$	M1
$= x^{4} - 7x^{3} + 17x^{2} - 17x + 6 (p = -7, q = 17, r = -17)$	A2
Note: Award A2 for all three values correct, A1 for two correct.	

Note: Accept long / synthetic division.
--

[5 marks]



normal curve centred on 50A1vertical lines at x = 42 and x = 54, with shading in betweenA1P(42 < X < 54) (= P(-2 < Z < 1))[2 marks]

(b)
$$P(42 < X < 54) (= P(-2 < Z < 1))$$

= 0.819

[2 marks]

A1

continued...

- 8 -

Question 3 continued

(c)
$$P(\mu - k\sigma < X < \mu + k\sigma) = 0.5 \Rightarrow P(X < \mu + k\sigma) = 0.75$$
 (M1)
 $k = 0.674$ A1

Note: Award ***M1A0*** for
$$k = -0.674$$
.

[2 marks]

4.

(a) (i) **METHOD 1**

$$PC = \frac{\sqrt{3}}{2} \text{ or } 0.8660$$
 (M1)

$$PM = \frac{1}{2}PC = \frac{\sqrt{3}}{4} \text{ or } 0.4330$$
 (A1)

$$AM = \sqrt{\frac{1}{4} + \frac{3}{16}}$$
$$= \frac{\sqrt{7}}{4} \text{ or } 0.661 \text{ (m)}$$

Note: Award *M1* for attempting to solve triangle AMP.

METHOD 2

using the cosine rule

$$AM^{2} = 1^{2} + \left(\frac{\sqrt{3}}{4}\right)^{2} - 2 \times \frac{\sqrt{3}}{4} \times \cos(30^{\circ})$$
M1A1

$$AM = \frac{\sqrt{7}}{4} \text{ or } 0.661 \text{ (m)}$$

(ii)
$$\tan(A\hat{M}P) = \frac{2}{\sqrt{3}}$$
 or equivalent (M1)
= 0.857 A1

[5 marks]

Question 4 continued

(b) EITHER

$$\frac{1}{2}AM^{2}(2A\hat{M}P - \sin(2A\hat{M}P)) \qquad (M1)A1$$
OR

$$\frac{1}{2}AM^{2} \times 2A\hat{M}P = \sqrt{3}$$
(M1)A1

$$\frac{1}{2}AM^{2} \times 2AMP - \frac{\sqrt{3}}{8}$$
= 0.158(m²) (M1)A1

Note: Award *M1* for attempting to calculate area of a sector minus area of a triangle.

[3 marks]

Total [8 marks]

5. (a)
$$\binom{3n+1}{3n-2} = \frac{(3n+1)!}{(3n-2)!3!}$$
 (M1)

$$=\frac{(3n+1)3n(3n-1)}{3!}$$
 A1

$$=\frac{9}{2}n^3 - \frac{1}{2}n \text{ or equivalent}$$
 A1

(b) attempt to solve
$$\frac{9}{2}n^3 - \frac{1}{2}n > 10^6$$
 (M1)
 $n > 60.57...$ (A1)

Note: Allow equality. $\Rightarrow n = 61$

[3 marks]

[3 marks]

Total [6 marks]

6. let P_n be the statement: $(1-a)^n > 1-na$ for some $n \in \mathbb{Z}^+, n \ge 2$, where 0 < a < 1consider the case n = 2: $(1-a)^2 = 1 - 2a + a^2$ > 1 - 2a because $a^2 > 0$. Therefore P_2 is true assume P_n is true for some n = k $(1-a)^k > 1-ka$

- 11 -

Note: Assumption of truth must be present. Following marks are not dependent on this M1.

EITHER

consider $(1-a)^{k+1} = (1-a)(1-a)^k$	M1
$> 1 - (k+1)a + ka^2$	A1
$> 1 - (k+1)a \implies P_{k+1}$ is true (as $ka^2 > 0$)	R1

OR

multiply both sides by $(1-a)$ (which is positive)	M1
$(1-a)^{k+1} > (1-ka)(1-a)$	
$(1-a)^{k+1} > 1-(k+1)a+ka^2$	A1
$(1-a)^{k+1} > 1-(k+1)a \Longrightarrow P_{k+1}$ is true (as $ka^2 > 0$)	R1

THEN

7.

 P_2 is true and P_k is true $\Rightarrow P_{k+1}$ is true so P_n true for all $n \ge 2$ (or equivalent)

Note: Only award the last *R1* if at least four of the previous marks are gained including the *A1*. [7 marks]

(a)	attempt to solve $v(t) = 0$ for t or equivalent	(M1)
	$t_1 = 0.441(s)$	A1

[2 marks]

R1

(b) (i)
$$a(t) = \frac{dv}{dt} = -e^{-t} - 16te^{-2t} + 16t^2e^{-2t}$$
 M1A1
Note: Award M1 for attempting to differentiate using the product rule.

(ii)
$$a(t_1) = -2.28 (\text{ms}^{-2})$$
 A1

[3 marks]

Total [5 marks]

8. (a)
$$np = 3.5$$
 (A1)
 $p \le 1 \Rightarrow \text{ least } n = 4$ A1

[2 marks]

Question 8 continued

(b)
$$(1-p)^n + np(1-p)^{n-1} = 0.09478$$

attempt to solve above equation with $np = 3.5$ (M1)
 $n = 12, p = \frac{7}{24}$ (= 0.292)
A1A1

Note: Do not accept *n* as a decimal.

[5 marks]

Total [7 marks]

Section B

9.	(a)	(i)	$X \sim \text{Po}(5.3)$		
			$P(X = 4) = e^{-5.3} \frac{5.3^4}{4!}$	(M1)	
			= 0.164	A1	
		(ii)	METHOD 1		
			listing probabilities (table or graph) mode $X = 5$ (with probability 0.174)	M1 A1	
		No	te: Award <i>MOA0</i> for 5 (taxis) or mode = 5 with no justification.		
			METHOD 2		
			mode is the integer part of mean $E(X) = 5.3 \Rightarrow \text{mode} = 5$	R1 A1	
		No	te: Do not allow <i>R0A1</i> .		
		(iii)	attempt at conditional probability	(M1)	
			$\frac{P(X=7)}{P(X \ge 6)} \text{ or equivalent} \left(=\frac{0.1163}{0.4365}\right)$	A1	
			= 0.267	A1	[7 marks]
	(b)	MET	THOD 1		
			possible arrivals are (2,0), (1,1), (0,2) Po(0.65)	(A1) A1	
			mpt to compute, using sum and product rule, $70106 \times 0.52204 + 0.026455 \times 0.33932 + 0.0049916$	(M1) × 0.11028 (A1)(A1)	
				(~,(~,)	

Note: Award A1 for one correct product and A1 for two other correct products.

= 0.0461

A1 [6 marks]

Question 9 continued

METHOD 2

recognising a sum of 2 independent Poisson variables $eg Z = X + Y$	R1	
$\lambda = 5.3 + \frac{1.3}{2}$	A1	
P(Z=2) = 0.0461	(M1)A3	
		[6 marks]

Total [13 marks]

10. (a) (i) v 7-6 5 4 3. 2 -*x* 5π π π Ó π 4 8 8 8 A1A1 A1 for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts. Note: Axes intercepts and scales not required. A1 for correct domain for each value of x there is a unique value of f(x)A1 (ii) Note: Accept "passes the vertical line test" or equivalent. no inverse because the function fails the horizontal line test (iii) or equivalent **R1**

Note: No FT if the graph is in degrees (one-to-one).

(iv) the expression is not valid at either of $x = \frac{\pi}{4} \left(\text{or } -\frac{3\pi}{4} \right)$ **R1**

[5 marks]

Question 10 continued

(b) METHOD 1

$$f(x) = \frac{\tan\left(x + \frac{\pi}{4}\right)}{\tan\left(\frac{\pi}{4} - x\right)}$$

$$M1$$

$$\frac{\tan x + \tan\frac{\pi}{4}}{1 - \tan x \tan\frac{\pi}{4}}$$

$$M1A1$$

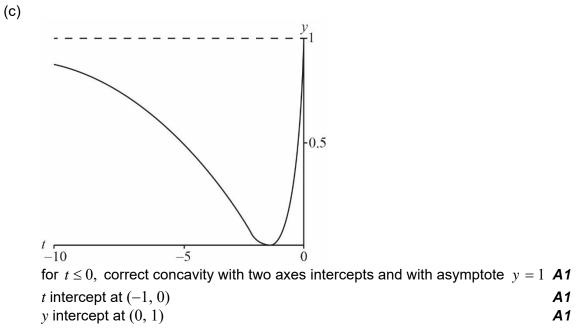
$$\frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4}\tan x}$$
$$= \left(\frac{1+t}{1-t}\right)^2$$
AG

METHOD 2

$$f(x) = \tan\left(x + \frac{\pi}{4}\right) \tan\left(\frac{\pi}{2} - \frac{\pi}{4} + x\right)$$
(M1)
$$= \tan^{2}\left(x + \frac{\pi}{4}\right)$$
A1
$$g(t) = \left(\frac{\tan x + \tan\frac{\pi}{4}}{1 - \tan x \tan\frac{\pi}{4}}\right)^{2}$$
A1
$$= \left(\frac{1+t}{1-t}\right)^{2}$$
AG

[3 marks]

Question 10 continued



(d) (i) METHOD 1

$$\alpha, \beta$$
 satisfy $\frac{(1+t)^2}{(1-t)^2} = k$ M1

$$1 + t^{2} + 2t = k(1 + t^{2} - 2t)$$
A1

$$(k-1)t^2 - 2(k+1)t + (k-1) = 0$$
 A1

attempt at using quadratic formula M1

$$\alpha, \beta = \frac{k + 1 \pm 2\sqrt{k}}{k - 1}$$
 or equivalent A1

METHOD 2

$$\alpha, \beta$$
 satisfy $\frac{1+t}{1-t} = (\pm)\sqrt{k}$ M1

$$t + \sqrt{kt} = \sqrt{k} - 1$$
 M1

$$t = \frac{\sqrt{k-1}}{\sqrt{k}+1}$$
 (or equivalent) A1

$$t - \sqrt{kt} = -\left(\sqrt{k} + 1\right) \tag{M1}$$

$$t = \frac{\sqrt{k+1}}{\sqrt{k}-1}$$
 (or equivalent) A1

so for eg,
$$\alpha = \frac{\sqrt{k}-1}{\sqrt{k}+1}$$
, $\beta = \frac{\sqrt{k}+1}{\sqrt{k}-1}$

Question 10 continued

(ii)
$$\alpha + \beta = 2 \frac{(k+1)}{(k-1)} \left(= -2 \frac{(1+k)}{(1-k)} \right)$$
 A1
since $1 + k > 1 - k$ R1
 $\alpha + \beta < -2$ AG

– 17 –

$$\alpha + \beta < -2$$
 AC

Note: Accept a valid graphical reasoning.

[7 marks]

Total [18 marks]

11. (a) attempt at implicit differentiation **M1**
$$1 + \frac{dy}{dx} + (y + x\frac{dy}{dx})\sin(xy) = 0$$
 A1M1A1

Note: Award **A1** for first two terms. Award **M1** for an attempt at chain rule **A1** for last term. $(1 + x\sin(xy))\frac{dy}{dx} = -1 - y\sin(xy)$ or equivalent A1 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\left(\frac{1+y\sin(xy)}{1+x\sin(xy)}\right)$ AG

(b) (i) EITHER

when
$$xy = -\frac{\pi}{2}$$
, $\cos xy = 0$ M1
 $\Rightarrow x + y = 0$ (A1)

OR

$$x - \frac{\pi}{2x} - \cos\left(\frac{-\pi}{2}\right) = 0 \text{ or equivalent}$$

$$x - \frac{\pi}{2x} = 0$$
(A1)

THEN

therefore
$$x^2 = \frac{\pi}{2} \left(x = \pm \sqrt{\frac{\pi}{2}} \right) (x = \pm 1.25)$$

$$P\left(\sqrt{\frac{\pi}{2}}, -\sqrt{\frac{\pi}{2}}\right), Q\left(-\sqrt{\frac{\pi}{2}}, \sqrt{\frac{\pi}{2}}\right)$$
or $P(1.25, -1.25), Q(-1.25, 1.25)$ **A**

continued...

1

1

Question 11 continued

(ii)
$$m_{1} = -\left(\frac{1-\sqrt{\frac{\pi}{2}} \times -1}{1+\sqrt{\frac{\pi}{2}} \times -1}\right)$$
$$\left(1+\sqrt{\frac{\pi}{2}} \times -1\right)$$
M1A1

$$m_2 = -\left(\frac{\sqrt{2}}{1 - \sqrt{\frac{\pi}{2}} \times -1}\right)$$

$$m_1 m_2 = 1$$
 AG

Note: Award M1A0A0 if decimal approximations are used	
Note: No <i>FT</i> applies.	

[7 marks]

(c)	equate derivative to -1	M1	
	$(y-x)\sin(xy)=0$	(A1)	
	$y = x, \sin(xy) = 0$	R1	
	in the first case, attempt to solve $2x = \cos(x^2)$	M1	
	(0.486,0.486)	A1	
	in the second case, $sin(xy) = 0 \Rightarrow xy = 0$ and $x + y = 1$	(M1)	
	(0,1), (1,0)	A1	
		[7 marks]	

Total [19 marks]