33
$$f(x) = \frac{x+2}{x-1} = \frac{x-1+3}{x-1} = 1 + \frac{3}{x-1}$$

- **a** The domain is $\{x \mid x \neq 1\}$. The range is $\{y \mid y \neq 1\}$.
- $f(0) = \frac{2}{-1} = -2$, so the *y*-intercept is -2. f(x) = 0 when x + 2 = 0

$$\therefore x = -2$$

 \therefore the x-intercept is -2.

- **e** As $x \to 1^-$, $f(x) \to -\infty$ As $x \to 1^+$, $f(x) \to \infty$ As $x \to -\infty$, $f(x) \to 1^-$ As $x \to \infty$, $f(x) \to 1^+$
- y = 1 $f(x) = \frac{x+2}{x-1}$ x = 1

34
$$f(x) = 2 + \frac{4}{x+1}$$

a $f(0) = 2 + \frac{4}{1} = 6$, so the *y*-intercept is 6.

$$f(x) = 0$$
 when $2 + \frac{4}{x+1} = 0$
 $\therefore 2(x+1) + 4 = 0$
 $\therefore 2(x+1) = -4$
 $\therefore x+1 = -2$

$$\therefore x+1=-2$$

$$\therefore x = -3$$

 \therefore the x-intercept is -3.

b The vertical asymptote is x = 1. The horizontal asymptote is y = 1.

- **b** $f(-2) = 2 + \frac{4}{-2+1}$ = $2 + \frac{4}{-1}$ = -2
- **c** i The horizontal asymptote is y = 2.
 - ii The vertical asymptote is x = -1.

The function is undefined when $x^2 + 4x - 21 = 0$

$$\therefore (x+7)(x-3) = 0$$

$$\therefore x = -7 \text{ or } 3$$

 \therefore the vertical asymptotes are x = -7 and x = 3.

ii When x = 0, $y = -\frac{2}{21}$, so the y-intercept is $-\frac{2}{21}$.

When
$$y = 0$$
, $2 - x = 0$

$$\therefore x=2$$

 \therefore the x-intercept is 2.

iv As
$$x \to -7^-$$
, $y \to \infty$

As
$$x \to -7^+$$
, $y \to -\infty$

As
$$x \to 3^-$$
, $y \to \infty$

As
$$x \to 3^+$$
, $y \to -\infty$

As
$$x \to -\infty$$
, $y \to 0^+$

As
$$x \to \infty$$
, $y \to 0^-$

i The horizontal asymptote is y = 0.

The function is undefined when

$$2x^2 + 9x + 9 = 0$$

$$2x^2 + 6x + 3x + 9 = 0$$

$$\therefore 2x(x+3) + 3(x+3) = 0$$

$$(x+3)(2x+3) = 0$$

$$\therefore x = -3 \text{ or } -\frac{3}{2}$$

ii When x = 0, $y = -\frac{2}{9}$, so the y-intercept is $-\frac{2}{9}$.

When
$$y = 0$$
, $5x - 2 = 0$

$$\therefore$$
 $5x = 2$

$$\therefore x = \frac{2}{5}$$

 \therefore the x-intercept is $\frac{2}{5}$.

 \therefore the vertical asymptotes are x = -3 and $x = -\frac{3}{2}$.

iv As $x \to -3^-$, $y \to -\infty$

As
$$x \to -3^+$$
, $y \to \infty$

As
$$x \to -\frac{3}{2}^-$$
, $y \to \infty$

As
$$x \to -\frac{3}{2}^+$$
, $y \to -\infty$

As
$$x \to -\infty$$
, $y \to 0^-$

As
$$x \to \infty$$
, $y \to 0^+$

a $f(0) = \frac{2}{3}$, so the y-intercept is $\frac{2}{3}$.

$$f(x) = 0$$
 when $x + 2 = 0$

$$\therefore x = -2$$

 \therefore the x-intercept is -2.

b $x^2 + bx + 3 = 0$ (*) has discriminant $\Delta = b^2 - 4(1)(3)$

$$=b^2-12$$

$$= (b - \sqrt{12})(b + \sqrt{12})$$

 Δ has sign diagram

- **i** f(x) has no vertical asymptotes **ii** f(x) has one vertical asymptote **iii** f(x) has two vertical asymptotes when (*) has no real solutions.
 - when (*) has 1 real solution.
- when (*) has 2 real solutions.

$$\Delta < 0$$

$$\Delta = 0$$

$$\Delta > 0$$

$$\therefore -\sqrt{12} < b < \sqrt{12}$$

$$b = \pm \sqrt{12}$$

 $b < -\sqrt{12}$ or $b > \sqrt{12}$

37 **a**
$$y = \frac{x^2 - 2x - 8}{x - 3}$$

- i The vertical asymptote is x = 3.
- ii When x=0, $y=\frac{-8}{-3}=\frac{8}{3}$, so the y-intercept is $\frac{8}{3}$.

When
$$y = 0$$
, $x^2 - 2x - 8 = 0$

$$(x+2)(x-4) = 0$$

$$\therefore x = -2 \text{ or } 4$$

 \therefore the x-intercepts are -2 and 4.

iii
$$y = \frac{x^2 - 2x - 8}{x - 3}$$

= $x + 1 - \frac{5}{x - 3}$ $x + 1$
 $x - 3$ $x - 3$

$$-\frac{(x-3)}{-5}$$

 \therefore the oblique asymptote is y = x + 1.

a f(x)

$$f(2x) \xrightarrow{\text{translation } \left(\begin{array}{c}1\\3\end{array}\right)} f(2(x-1)) + 3$$

- - **b** f(x) scale factor 4 $f(\frac{1}{4}x)$ scale factor 2 $2f(\frac{1}{4}x)$
- reflection in x-axis $-2f(\frac{1}{4}x)$ $\xrightarrow{\text{translation } \begin{pmatrix} 0 \\ 5 \end{pmatrix}} 5 2f(\frac{1}{4}x)$

- translation
- $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

- $f(x-2) \xrightarrow{\text{scale factor } 3} f(\frac{1}{3}x-2) \xrightarrow{\text{vertical stretch}} 6f(\frac{1}{3}x-2) \xrightarrow{\text{(a)}} 6f(\frac{1}{3}x-2) \xrightarrow{\text{(b)}} 6f(\frac{1}{3}x-2) \xrightarrow{\text{(b)}} 6f(\frac{1}{3}x-2) \xrightarrow{\text{(b)}} 6f(\frac{1}{3}x-2) \xrightarrow{\text{(c)}} 6f$

- **a** The graph of y = -f(x) is found by reflecting 71 y = f(x) in the x-axis.
- **b** The graph of y = f(-x) is found by reflecting y = f(x) in the y-axis.

• The graph of y = f(x-2) is found by translating y = f(x) 2 units to the right.

 $f(x) = -1 \quad \text{for} \quad x < 0, \quad \text{so}$ $\frac{1}{f(x)} = -1 \quad \text{for} \quad x < 0.$ $f(x) \geqslant 1 \quad \text{for} \quad x \geqslant 0, \quad \text{so}$ $0 < \frac{1}{f(x)} \leqslant 1 \quad \text{for} \quad x \geqslant 0.$

72 **a** y=f(x) has x-intercepts -1 and 3, so $y=\frac{1}{f(x)}$ has vertical asymptotes x=-1 and x=3. y=f(x) has a local maximum at (1,2), so $y=\frac{1}{f(x)}$ has local minimum at $(1,\frac{1}{2})$.

b y=f(x) has x-intercepts -5 and 1, so $y=\frac{1}{f(x)}$ has vertical asymptotes x=-5 and x=1. $y=f(x) \text{ has local maximum } (-1,5), \text{ so } y=\frac{1}{f(x)} \text{ has local minimum } (-1,\frac{1}{5}).$ $y=f(x) \text{ has } y\text{-intercept } 4, \text{ so } y=\frac{1}{f(x)} \text{ has } y\text{-intercept } \frac{1}{4}.$

73 (-4,3) 3 y y = f(x) $y = [f(x)]^2 - 1$ x (-2,-1) (-4,-2)

a $f(0) = \frac{6}{3} = 2$, so the *y*-intercept is 2.

$$f(x) = 0$$
 when $6 - 2x = 0$
 $\therefore 2x = 6$
 $\therefore x = 3$

 \therefore the x-intercept is 3.

The vertical asymptote is x = -3.

$$f(x) = \frac{6 - 2x}{x + 3}$$
$$= \frac{6 - 2(x + 3) + 6}{x + 3}$$
$$= \frac{12}{x + 3} - 2$$

- \therefore the horizontal asymptote is y = -2.
- c Invariant points occur where

$$f(x) = 0 \text{ or } f(x) = 1$$

$$\therefore \frac{6 - 2x}{x + 3} = 1$$

$$\therefore 6 - 2x = x + 3$$

$$\therefore -3x = -3$$

$$\therefore x = 1$$

 \therefore the invariant points are (1, 1) and (3, 0).

The x-intercept of $y = [f(x)]^2$ is 3. The vertical asymptote of $y = [f(x)]^2$ is x = -3. The horizontal asymptote of $y = [f(x)]^2$ is

b The y-intercept of $y = [f(x)]^2$ is $2^2 = 4$.

 $y = (-2)^2 = 4$.

b If
$$\left| \frac{2x+5}{3-x} \right| = 2$$
, then $\frac{2x+5}{3-x} = \pm 2$
 $\therefore \frac{2x+5}{3-x} = 2$ or $\frac{2x+5}{3-x} = -2$
 $\therefore 2x+5=6-2x$ or $2x+5=-6+2x$
 $\therefore 4x=1$ $5=-6$ X
So, $x=\frac{1}{4}$.

82
$$f(x) = (5x-2)\left(\frac{a}{x}+3\right)$$
 is an odd function

$$f(-x) = -f(x)$$

$$(5(-x) - 2) \left(\frac{a}{-x} + 3\right) = -(5x - 2) \left(\frac{a}{x} + 3\right)$$

$$(5x + 2) \left(3 - \frac{a}{x}\right) = -(5x - 2) \left(\frac{a}{x} + 3\right)$$

$$(5x + 2) \left(3 - \frac{a}{x}\right) = (5x - 2) \left(\frac{a}{x} + 3\right)$$

$$(5x + 2)(3x - a) = (5x - 2)(a + 3x), \quad x \neq 0$$

$$(5x + 2)(3x - a) = (5x - 2)(a + 3x), \quad x \neq 0$$

$$(15x^2 - 5ax + 6x - 2a = 5ax + 15x^2 - 2a - 6x$$

$$(12 - 10a)x = 0$$

- **a** A function is even if f(-x) = f(x) for all x in the domain of the function. 83
 - \therefore for any value in the range of f, there exists at least two corresponding values of x in the domain (except in the trivial case f(x) = k with domain x = 0)
 - : the function fails the horizontal line test, and does not have an inverse.

b If
$$f(x) = x^4 + x^2$$

then $f(-x) = (-x)^4 + (-x)^2$
 $= x^4 + x^2$
 $= f(x)$

From the graph, we observe that the function is strictly increasing for $x \ge 0$.

 \therefore we can choose the domain restriction $x \ge 0$ for the function to have an inverse.