- **33** Consider the function $f(x) = \frac{x+2}{x-1}$.
 - a Find the domain and range of f.
- **b** Write down the equations of the asymptotes of y = f(x).
- c Find the axes intercepts.
- **d** Draw a sign diagram for f(x).
- Describe the behaviour of the function near the asymptotes.
- f Sketch the function.
- **34** Consider the graph of y = f(x) where $f(x) = 2 + \frac{4}{x+1}$.
 - Find the axes intercepts.

b Calculate f(-2).

- c Determine the equation of the:
 - i horizontal asymptote

- ii vertical asymptote.
- **d** Sketch the graph of $y=2+\frac{4}{x+1}$. Label the axes intercepts and asymptotes clearly.
- **35** For each of the following functions:
 - i Find the equations of the asymptotes.
- ii Find the axes intercepts.
- iii Draw a sign diagram of the function.
- iv Hence discuss the behaviour of the function near the asymptotes.
- V Sketch the graph of the function.

a
$$y = \frac{2-x}{x^2+4x-21}$$

b
$$y = \frac{5x-2}{2x^2+9x+9}$$

- **36** Consider the function $f(x) = \frac{x+2}{x^2+bx+3}$ where b is a constant.
 - a Find the axes intercepts.
 - Find the possible value(s) of b such that f(x) has:
 - i no vertical asymptotes
- ii one vertical asymptote
- iii two vertical asymptotes.

- **37** For each of the following functions:
 - i Find the equation of the vertical asymptote.
- ii Find the axes intercepts.

iii Find the oblique asymptote.

- iv Draw a sign diagram of the function.
- Hence discuss the behaviour of the function near its asymptotes.
- vi Sketch the graph of the function.

a
$$y = \frac{x^2 - 2x - 8}{x - 3}$$

b
$$y = \frac{6x^2 - 7x - 5}{3x + 2}$$

70 Fully describe the transformations which map y = f(x) onto:

a
$$y = f(2(x-1)) + 3$$

b
$$y = 5 - 2f(\frac{1}{4}x)$$

$$y = 6f(\frac{1}{3}x - 2) + 4$$

71 The function y = f(x) is illustrated. Sketch the graphs of:

a
$$y = -f(x)$$

b
$$y = f(-x)$$

$$y = f(x-2)$$

$$d y = 2f(x$$

$$\label{eq:second} \begin{array}{ll} \mathbf{a} & y = -f(x) \\ \mathbf{d} & y = 2f(x) \end{array} \qquad \begin{array}{ll} \mathbf{b} & y = f(-x) \\ \mathbf{e} & y = \frac{1}{f(x)} \end{array}$$

72 Copy the following graphs for y = f(x) and on the same axes graph $y = \frac{1}{f(x)}$:

а

ı

73 Copy the graph alongside, and on the same set of axes, sketch the graph of $y = [f(x)]^2 - 1$.

- **74** Consider the function $f(x) = \frac{6-2x}{x+3}$.
 - **a** Find the axes intercepts and asymptotes of the function.
 - **b** Hence find the axes intercepts and asymptotes of $y = [f(x)]^2$.
 - Which points are invariant when y = f(x) is transformed to $y = [f(x)]^2$?
 - **d** Sketch y = f(x) and $y = [f(x)]^2$ on the same set of axes.
- **75** a Sketch the graph of $f(x) = x^2 2x$, $x \in \mathbb{R}$, showing clearly the x-intercepts and vertex.
 - **b** Hence sketch the graph of:

$$i \quad y = f(|x|)$$

$$\mathbf{ii} \quad y = |f(x)|$$

77 Solve for x:

a
$$|3-2x|=5$$

b
$$\left| \frac{2x+5}{3-x} \right| = 2$$

$$|2-x|=3|x+4|$$

- **82** Suppose $f(x) = (5x-2)\left(\frac{a}{x}+3\right)$, $a \in \mathbb{R}$ is an odd function. Find the value of a.
- **83** a Can an even function have an inverse? Explain your answer.
 - **b** What domain restriction could be placed on $y = x^4 + x^2$ so that the new function obtained has an inverse?