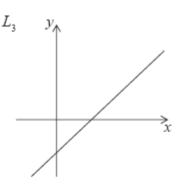
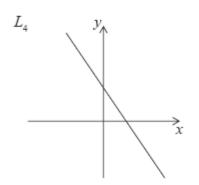
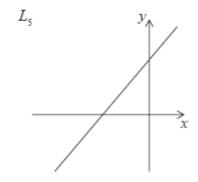
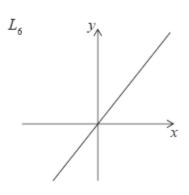

Calculate the gradient of *L*. (a) **(2)** (b) Find the equation of *L*. **(2)** The line L also passes through the point P(8, y). (c) Find the value of y. (Total 6 marks) The straight line, L_1 , has equation $y = -\frac{1}{2}x - 2$. 2. Write down the y intercept of L_1 . (a) **(1)** (b) Write down the gradient of L_1 . **(1)** The line L_2 is perpendicular to L_1 and passes through the point (3, 7). Write down the gradient of the line L_2 . **(1)** (d) Find the equation of L_2 . Give your answer in the form ax + by + d = 0 where $a, b, d \in$ \mathbb{Z} . (Total 6 marks)


The straight line L passes through the points A(-1, 4) and B(5, 8).


1.


3. The following diagrams show six lines with equations of the form y = mx + c.



In the table below there are four possible conditions for the pair of values m and c. Match each of the given conditions with one of the lines drawn above.

Condition	Line
m > 0 and $c > 0$	
m < 0 and $c > 0$	
m < 0 and $c < 0$	
m < 0 and $c < 0$	

(Total 6 marks)

4.	A lir	A line joins the points $A(2, 1)$ and $B(4, 5)$.		
	(a)	Find the gradient of the line AB.	(2)	
	Let I	Let M be the midpoint of the line segment AB.		
	(b)	Write down the coordinates of M.	(1)	
	(c)	Find the equation of the line perpendicular to AB and passing through M.	(3) (Total 6 marks)	
5.	P (4,	1) and $Q(0, -5)$ are points on the coordinate plane.		
	(a)	Determine the		
		(i) coordinates of M , the midpoint of P and Q ;		
		(ii) gradient of the line drawn through P and Q ;		
		(iii) gradient of the line drawn through M , perpendicular to PQ .		
	The perpendicular line drawn through M meets the y -axis at $R(0, k)$.			
	(b)	Find k .	(Total 6 marks)	
6.	The	mid-point, M, of the line joining $A(s, 8)$ to $B(-2, t)$ has coordinates $M(2, 3)$.		
	(a)	Calculate the values of s and t .	(2)	
	(b)	Find the equation of the straight line perpendicular to AB, passing through the point M.		
			(4) (Total 6 marks)	

- 7. Three points are given A(0, 4), B(6, 0) and C(8, 3).
 - (a) Calculate the gradient (slope) of line AB.

(2)

(b) Find the coordinates of the midpoint, M, of the line AC.

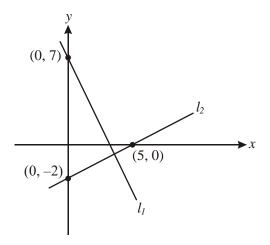
(2)

(c) Calculate the length of line AC.

(2)

(d) Find the equation of the line BM giving your answer in the form ax + by + d = 0 where a, b and $d \in \mathbb{Z}$.

(5)


(e) State whether the line AB is perpendicular to the line BC showing clearly your working and reasoning.

(3)

(Total 14 marks)

8. The following diagram shows the lines l_1 and l_2 , which are perpendicular to each other.

Diagram not to scale

- (a) Calculate the gradient of line l_1 .
- (b) Write the equation of line l_1 in the form ax + by + d = 0 where a, b and d are integers, and a > 0.

(Total 8 marks)