- 8 For what values of a do the curves $y = ax^2 + 2x + 1$ and $y = -x^2 + ax 1$:
 - a meet twice

b touch

c never meet?

REVIEW SET 14A

1 Use the vertex, axis of symmetry, and y-intercept to graph:

a
$$y = (x-2)^2 - 4$$

b
$$y = -\frac{1}{2}(x+4)^2 + 6$$

- **2** Find the points of intersection of $y = x^2 3x$ and $y = 3x^2 5x 24$.
- **3** For what values of k does the graph of $y = -2x^2 + 5x + k$ not cut the x-axis?
- 4 Find the values of m for which $2x^2 3x + m = 0$ has:
 - **a** a repeated root
- **b** two distinct real roots
- c no real roots.
- **5** The sum of a number and its reciprocal is $2\frac{1}{30}$. Find the number.
- Show that no line with a y-intercept of 10 will ever be tangential to the curve with equation $y = 3x^2 + 7x 2$.
- 7 a Write the quadratic $y = 2x^2 + 6x 3$ in the form $y = a(x h)^2 + k$.
 - **b** Hence sketch the graph of the quadratic.
- **8** Find the equation of the quadratic with graph:

a

b

C

- **9** Draw the graph of $y = -x^2 + 2x$.
- Find the y-intercept of the line with gradient -3 which is a tangent to the parabola $y = 2x^2 5x + 1$.
- **11** The graph shows the parabola y = a(x+m)(x+n) where m > n.

- **a** State the sign of:
 - i the discriminant Δ
- ii a.
- **b** Find, in terms of m and n, the:
 - i coordinates of the x-intercepts A and B
 - ii equation of the axis of symmetry.
- 12 For a quadratic function $y = ax^2 + bx + c$, suppose the constants a, b, and c are consecutive terms of a geometric sequence. Show that the function does not cut the x-axis.
- Find the quadratic function which cuts the x-axis at 3 and -2 and which has y-intercept 24. Give your answer in the form $y = ax^2 + bx + c$.
- **14** Find the value of k for which the x-intercepts of $y = 3x^2 + 2kx + k 1$ are closest together.

- **15** Consider the function $y = ax^2 + bx + c$ shown.
 - State the value of c.
 - **b** Use the other information to write two equations involving a and b.
 - Find a and b, and hence state the equation of the quadratic.

- For what values of m are the lines y = mx 10tangents to the parabola $y = 3x^2 + 7x + 2$?
- When Annie hits a softball, the height of the ball above the ground after t seconds is given by $h = -4.9t^2 + 19.6t + 1.4$ metres. Find the maximum height reached by the ball.

- Draw a sign diagram for:
 - **a** (3x+2)(4-x) **b** $-x^2+3x+18$

- Solve for *x*:
 - **a** (3-x)(x+2)<0 **b** $x^2-4x-5\leqslant 0$ **c** $2x^2+x>10$

- Find the values of k for which the function $f(x) = x^2 + kx + (3k 4)$:
 - a cuts the x-axis twice
- **b** touches the x-axis
 - \mathbf{c} misses the x-axis.

REVIEW SET 14B

- Consider the quadratic $y = \frac{1}{2}(x-2)^2 4$.
 - **a** State the equation of the axis of symmetry.
 - **b** Find the coordinates of the vertex.
- **c** Find the *y*-intercept.

- **d** Sketch the function.
- **2** Consider the quadratic $y = -3x^2 + 8x + 7$. Find the equation of the axis of symmetry, and the coordinates of the vertex.
- **3** Use the discriminant only to find the relationship between the graph and the x-axis for:
 - **a** $y = 2x^2 + 3x 7$

- **b** $y = -3x^2 7x + 4$
- 4 Find the equation of the quadratic with vertex (2, 25) and y-intercept 1.
- **a** Find the equation of the quadratic illustrated.
 - **b** Hence find its vertex and axis of symmetry.

- **6** Consider the quadratic $y = 2x^2 + 4x 1$.
 - **a** State the axis of symmetry.
- **b** Find the coordinates of the vertex.

c Find the axes intercepts.

- **d** Hence sketch the function.
- 7 Find, in the form $y = ax^2 + bx + c$, the quadratic function whose graph:
 - a touches the x-axis at 3 and passes through (2, 2)
 - has x-intercepts 3 and -2, and y-intercept 3
 - c passes through (-1, -9), (1, 5), and (2, 15)
 - has vertex (3, 15) and passes through the point (1, 7).
- **a** For what values of c do the lines with equations y = 3x + c intersect the parabola $y = x^2 + x - 5$ in two distinct points?
 - Choose one such value of c and find the points of intersection in this case.
- Find the maximum or minimum value of each quadratic, and the corresponding value of x:

a
$$y = 3x^2 + 4x + 7$$

b
$$y = -2x^2 - 5x + 2$$

- The graph of a quadratic function cuts the x-axis at -2 and 3, and passes through (-3, 18).
 - Find the equation of the function in the form $y = ax^2 + bx + c$.
 - Write down the y-intercept of the function.
 - **c** Find the coordinates of the vertex.

- 12 An open square-based box has capacity 120 mL. It is made from a square piece of tinplate with 4 cm squares cut from each of its corners. Find the dimensions of the original piece of tinplate.
- **13** Consider $y = -x^2 3x + 4$ and $y = x^2 + 5x + 4$.
 - **a** Solve for x: $-x^2 3x + 4 = x^2 + 5x + 4$.
 - **b** Sketch the curves on the same set of axes.
 - Hence solve for x: $x^2 + 5x + 4 > -x^2 3x + 4$.
- For each of the following quadratics:
 - i Write the quadratic in completed square form.
 - Write the quadratic in factored form.
 - Sketch the graph of the quadratic, identifying its axes intercepts, vertex, and axis of symmetry.

a
$$y = x^2 + 4x + 3$$

b
$$y = x^2 + 2x - 3$$

$$y = 2x^2 - 8x - 10$$

d
$$y = -x^2 + 6x + 7$$

Two different quadratic functions of the form $y = 9x^2 - kx + 4$ both touch the x-axis.

Find the two values of k.

b Find the point of intersection of the two quadratic functions.

600 m of fencing is used to construct 6 rectangular animal pens as shown.

• What is the area of each pen in this case?

A retailer sells sunglasses for \$45, and has 50 customers per day. From market research, the retailer discovers that for every \$1.50 increase in the price of the sunglasses, he will lose a customer per day.

Let \$x be the price increase of the sunglasses.

Show that the revenue collected by the retailer each day is

$$R = (45 + x) \left(50 - \frac{x}{1.5} \right)$$
 dollars.

b Find the price the retailer should set for his sunglasses in order to maximise his daily revenue. How much revenue is made per day at this price?

18 Draw a sign diagram for:

a
$$x^2 - 3x - 10$$

b
$$-(x+3)^2$$

19 Solve for x:

a
$$4x^2 - 3x < 0$$

b
$$2x^2 - 3x - 5 \ge 0$$
 c $\frac{11}{3}x \le 2x^2 + 1$

c
$$\frac{11}{3}x \leqslant 2x^2 + 1$$

Find the values of m for which the function $y = mx^2 + 5x + (m + 12)$:

a cuts the x-axis twice

b touches the x-axis

 \mathbf{c} misses the x-axis.

- 14 a $y = -\frac{8}{9}x^2 + 8$
 - **b** No, as the tunnel is only 4.44 m high when it is the same width as the truck.
- 15 a $h = -5(t-2)^2 + 80$
- b 75 m c 6 seconds

EXERCISE 14G

- a min. -1, when x=1
- b max. 8, when x = -1
- max. $8\frac{1}{3}$, when $x = \frac{1}{3}$
- d min. $-1\frac{1}{8}$, when $x = -\frac{1}{4}$
- e min. $4\frac{15}{16}$, when $x = \frac{1}{8}$
- f max. $6\frac{1}{8}$, when $x = \frac{7}{4}$
- **a** 40 refrigerators
- **b** €4000
- 4 500 m by 250 m
- 5 a $41\frac{2}{3}$ m by $41\frac{2}{3}$ m b 50 m by $31\frac{1}{4}$ m
- 6 **b** $3\frac{1}{8}$ units **7 a** $y = 6 \frac{3}{4}x$ **b** 3 cm by 4 cm

- $\sum_{i=1}^{n} a_i b_i$ 9 $y = x^4 2(a^2 + b^2)x^2 + (a^2 b^2)^2$ least value = $-4a^2b^2$

EXERCISE 14H.1

- - + \downarrow \downarrow + \downarrow x

EXERCISE 14H.2

- 1 a $-5 \leqslant x \leqslant 2$ b $-3 \leqslant x \leqslant 2$ c no solutions

 - **d** all $x \in \mathbb{R}$ **e** $-\frac{1}{2} < x < 3$ **f** $-\frac{3}{2} < x < 4$
- 2 **a** $x \le 0$ or $x \ge 1$ **b** $-\frac{2}{3} < x < 0$ **c** $x \ne -2$
- 3 **a** $x \le 0$ or $x \ge 3$ **b** -2 < x < 2
- $x \leqslant -\sqrt{2}$ or $x \geqslant \sqrt{2}$ $-3 \leqslant x \leqslant 7$
 - x < 5 or x > 6 f x < -6 or x > 7
 - $\mathbf{g} \quad x \leqslant -1 \quad \text{or} \quad x \geqslant \frac{3}{2}$
- h no solutions
- $-\frac{3}{2} < x < \frac{1}{3}$
- $x < -\frac{4}{3}$ or x > 4
- $\mathbf{k} \ \ x \neq 1$ $\frac{1}{3} \leqslant x \leqslant \frac{1}{2}$
- $x < -\frac{1}{6}$ or x > 1
- $x \leqslant -\frac{1}{4}$ or $x \geqslant \frac{2}{3}$
- $x < \frac{3}{2}$ or x > 3

k = -8 or 0

- 4 a i k < -8 or k > 0
 - -8 < k < 0
 - **b** $i -1 < k < 1, k \neq 0$
- ii k = -1 or 1
- k < -1 or k > 1
- c i k < -6 or k > 2
- ii k = -6 or k = 2
- -6 < k < 2
- 5 a i k < -2 or k > 6
- ii k = -2 or k = 6
- -2 < k < 6
- **b** i $k < -\frac{13}{9}$ or k > 3
- ii $k = -\frac{13}{9}$ or k = 3
 - $\frac{11}{9} < k < 3$
- c i $-\frac{4}{3} < k < 0, \ k \neq -1$ ii $k = -\frac{4}{3}$ or k = 0

 - iii $k < -\frac{4}{3}$ or k > 0
- 6 **a** m > 3 **b** m < -1
- 7 **a** m < -1 or m > 7
 - **b** m = -1 or m = 7
 - -1 < m < 7
- 8 a $a < 6 2\sqrt{10}$ or $a > 6 + 2\sqrt{10}$

V(2, -4)

- **b** $a = 6 \pm 2\sqrt{10}$
- $6 2\sqrt{10} < a < 6 + 2\sqrt{10}$

1 3 21 4

- 8 a $y = \frac{20}{9}(x-2)^2 20$ b $y = -\frac{2}{7}(x-1)(x-7)$
- - $y = \frac{2}{9}(x+3)^2$

- 10 $\frac{1}{2}$
- 11 a i $\Delta > 0$ ii a < 0
 - **b** i A(-m, 0), B(-n, 0) ii $x = \frac{-m-n}{2}$
- 13 $y = -4x^2 + 4x + 24$ 14 $k = \frac{3}{2}$
- 15 a c = 8 b 3a + b = -3, a b = -5
 - $a = -2, b = 3, y = -2x^2 + 3x + 8$
- **16** m = -5 or 19 **17** 21 m

- **19 a** x < -2 or x > 3 **b** $-1 \leqslant x \leqslant 5$
- $x < -\frac{5}{2}$ or x > 2
- **20** a $k < 6 2\sqrt{5}$ or $k > 6 + 2\sqrt{5}$ b $k = 6 \pm 2\sqrt{5}$
- - $6 2\sqrt{5} < k < 6 + 2\sqrt{5}$

REVIEW SET 14B

- 1 **a** x = 2
 - **b** (2, -4) \mathbf{c} -2

- $2 \quad x = \frac{4}{3}, \quad V(1\frac{1}{3}, 12\frac{1}{3})$
- $\Delta = 65$, the graph cuts the x-axis twice
- **b** $\Delta = 97$, the graph cuts the x-axis twice

- $4 \quad y = -6(x-2)^2 + 25$
- 5 a $y = -\frac{2}{5}(x+5)(x-1)$ b $(-2, 3\frac{3}{5}), x = -2$

- 7 **a** $y = 2x^2 12x + 18$ **b** $y = -\frac{1}{2}x^2 + \frac{1}{2}x + 3$

 - $y = x^2 + 7x 3$ $y = -2x^2 + 12x 3$
 - 8 a c > -6
 - **b** For example, when c = -2, points of intersection are (-1, -5) and (3, 7).
 - 9 a minimum is $5\frac{2}{3}$ when $x=-\frac{2}{3}$
 - **b** maximum is $5\frac{1}{8}$ when $x=-\frac{5}{4}$
- 10 **a** $y = 3x^2 3x 18$ **b** -18 **c** $(\frac{1}{2}, -18\frac{3}{4})$

- 11 **a** m = -2, n = 4 **b** k = 7 12 ≈ 13.5 cm square

- - x < -4 or x > 0

- 14 a i $y = (x+2)^2 1$ b i $y = (x+1)^2 4$
 - ii y = (x+3)(x+1) ii y = (x+3)(x-1)

- - ii y = 2(x-5)(x+1) ii y = -(x-7)(x+1)

- i $y = 2(x-2)^2 18$ i $y = -(x-3)^2 + 16$
 - - \uparrow^y V(3, 16) $7/y = -x^2 + 6x + 7$

- a $k = \pm 12$ 15
- **b** (0, 4)

V(2, -18)

- **16 b** $37\frac{1}{2}$ m by $33\frac{1}{3}$ m
- 1250 m^2
- **b** \$60, revenue is \$2400 per day

- 19 **a** $0 < x < \frac{3}{4}$
- **b** $x \leqslant -1$ or $x \geqslant \frac{5}{2}$