The function f is defined as $f(x) = \frac{3x+2}{x+1}$, $x \in \mathbb{R}$, $x \neq -1$.

Sketch the graph of y = f(x), clearly indicating and stating the equations of any asymptotes and the coordinates of any axes intercepts.

-3-

 	 	 	 	 ٠.	 	 	 	 		 	٠.			
 	 	 	 	 ٠.	 	 	 	 		 	٠.			
											٠.			
 	 	 	 	 ٠.	 	 	 	 	٠.	 		٠.		
 	 	 	 	 ٠.	 	 	 ٠.	 		 	٠.			
											٠.			
											٠.			
 	 	 	 	 ٠.	 	 	 	 	٠.	 	٠.			
 	 	 	 	 ٠.	 	 	 ٠.	 	٠.	 	٠.			
 	 	 	 	 ٠.	 	 	 ٠.	 		 	٠.			
 	 	 	 	 ٠.	 	 	 ٠.	 	٠.	 	٠.	٠.	٠.	

Turn over

Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

10. [Maximum mark: 17]

The function f is defined by $f(x) = \frac{3x}{x-2}$, $x \in \mathbb{R}$, $x \neq 2$.

- (a) Sketch the graph of y = f(x), indicating clearly any asymptotes and points of intersection with the x and y axes. [4]
- (b) Find an expression for $f^{-1}(x)$. [4]
- (c) Find all values of x for which $f(x) = f^{-1}(x)$. [3]
- (d) Solve the inequality $|f(x)| < \frac{3}{2}$. [4]
- (e) Solve the inequality $f(|x|) < \frac{3}{2}$. [2]

11. [Maximum mark: 16]

Consider the functions $f(x) = \tan x$, $0 \le x < \frac{\pi}{2}$ and $g(x) = \frac{x+1}{x-1}$, $x \in \mathbb{R}$, $x \ne 1$.

- (a) Find an expression for $g \circ f(x)$, stating its domain. [2]
- (b) Hence show that $g \circ f(x) = \frac{\sin x + \cos x}{\sin x \cos x}$. [2]
- (c) Let $y = g \circ f(x)$, find an exact value for $\frac{\mathrm{d}y}{\mathrm{d}x}$ at the point on the graph of $y = g \circ f(x)$ where $x = \frac{\pi}{6}$, expressing your answer in the form $a + b\sqrt{3}$, $a, b \in \mathbb{Z}$. [6]
- (d) Show that the area bounded by the graph of $y = g \circ f(x)$, the x-axis and the lines x = 0 and $x = \frac{\pi}{6}$ is $\ln(1 + \sqrt{3})$. [6]

4. [Maximum mark: 5]

The following diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = -1. The graph crosses the x-axis at x = -1 and x = 1, and the y-axis at y = 2.

On the following set of axes, sketch the graph of $y = [f(x)]^2 + 1$, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.

Turn over

5. [Maximum mark: 6]

The functions f and g are defined by $f(x) = ax^2 + bx + c$, $x \in \mathbb{R}$ and $g(x) = p \sin x + qx + r$, $x \in \mathbb{R}$ where a, b, c, p, q, r are real constants.

(a) Given that f is an even function, show that b=0.

[2]

(b) Given that g is an odd function, find the value of r.

[2]

The function h is both odd and even, with domain \mathbb{R} .

(c) Find h(x).

[2]

7. [Maximum mark: 8]

(a) Sketch on the same axes the curve $y = \left| \frac{7}{x-4} \right|$ and the line y = x+2, clearly indicating any axes intercepts and any asymptotes. [3]

(b) Find the exact solutions to the equation $x + 2 = \left| \frac{7}{x - 4} \right|$. [5]

3. [Maximum mark: 4]

A rational function is defined by $f(x)=a+\frac{b}{x-c}$ where the parameters a, b, $c\in\mathbb{Z}$ and $x\in\mathbb{R}\setminus\{c\}$. The following diagram represents the graph of y=f(x).

Using the information on the graph,

(a) state the value of a and the value of c;

[2]

(b) find the value of b.

[2]

 	 	• • •	 ٠.	 ٠.	 • •	• •	 • •	 ٠.	• •	 ٠.	٠.	• •	• •	• •	• •	 	
 	 		 	 	 		 	 		 ٠.						 	
 	 		 	 	 		 	 		 ٠.						 	
 	 		 ٠.	 ٠.	 		 	 ٠.		 ٠.						 	
 	 		 	 ٠.	 ٠.		 ٠.	 ٠.		 ٠.						 	
 	 		 	 ٠.	 ٠.		 ٠.	 ٠.		 ٠.						 	
 	 		 	 ٠.	 ٠.		 ٠.	 ٠.		 ٠.						 	
 	 		 	 	 		 	 		 ٠.	٠.					 	

o. piviaximum mark. S	6 .	Maximum	mark:	5
------------------------------	------------	---------	-------	---

Consider the graphs of y = |x| and y = -|x| + b, where $b \in \mathbb{Z}^+$.

(a) Sketch the graphs on the same set of axes.

[2]

(b) Given that the graphs enclose a region of area 18 square units, find the value of b.

[3]

							 					 								 				 				•	 •		

.....

Turn over

9. [Maximum mark: 17]

Consider the function f defined by $f(x) = x^2 - a^2$, $x \in \mathbb{R}$ where a is a positive constant.

- (a) Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.
 - (i) y = f(x);

(ii)
$$y = \frac{1}{f(x)};$$

(iii)
$$y = \left| \frac{1}{f(x)} \right|.$$
 [8]

11. [Maximum mark: 17]

(a) (i) Express $x^2 + 3x + 2$ in the form $(x + h)^2 + k$.

(ii) Factorize
$$x^2 + 3x + 2$$
. [2]

Consider the function $f(x) = \frac{1}{x^2 + 3x + 2}$, $x \in \mathbb{R}$, $x \neq -2$, $x \neq -1$.

(b) Sketch the graph of f(x), indicating on it the equations of the asymptotes, the coordinates of the y-intercept and the local maximum. [5]

(e) Sketch the graph of
$$y = f(|x|)$$
. [2]