a i
$$u_5 = 217 \times (1.42)^5$$

 ≈ 1252.86

The expected population size after 5 years is approximately 1250 birds.

ii
$$u_{10} = 217 \times (1.42)^{10}$$

 ≈ 7233.41

The expected population size after 10 years is approximately 7230 birds.

b
$$217 \times (1.42)^n = 30\,000$$

 $\therefore (1.42)^n = \frac{30\,000}{217}$
 $\therefore n \log 1.42 = \log\left(\frac{30\,000}{217}\right)$
 $\therefore n = \frac{\log\left(\frac{30\,000}{217}\right)}{\log 1.42}$
 $\therefore n \approx 14.1$

It will take approximately 14.1 years for the population to reach 30 000.

12 a The interest is calculated annually, so n=7 time periods, and i=8.25%.

$$u_7 = u_0 \times (1+i)^7$$

= 2000 × (1.0825)⁷ {8.25% = 0.0825}
 ≈ 3483.58

The total value of Kapil's investment on January 1st 2019 is 3484 rupees.

b There are $n = 7 \times 12 = 84$ time periods.

Each time period the investment increases by $i = \frac{8\%}{12} \approx 0.667\%$

$$u_{84}=u_0\times (1+i)^{84}$$
 $\approx 2000\times (1.006\,67)^{84} \quad \{0.667\%=0.006\,67\}$ ≈ 3494.84

The total value of Kapil's investment on January 1st 2019 for this account is 3495 rupees, which is 11 rupees more than the account in a.

: investing in the account paying 8% per annum interest compounded monthly is the better option.

19 **a**
$$5 \times 2^x = 160$$

 $\therefore 2^x = 32$
 $\therefore 2^x = 2^5$
 $\therefore x = 5$ {equating indices}

(
$$\left(\frac{1}{3}\right)^{2x-5} = 27$$

 $\therefore (3^{-1})^{2x-5} = 3^3$
 $\therefore 3^{5-2x} = 3^3$
 $\therefore 5-2x = 3$ {equating indices}
 $\therefore -2x = -2$
 $\therefore x = 1$

b
$$8^{2x-3} = 16^{2-x}$$

 $\therefore (2^3)^{2x-3} = (2^4)^{2-x}$
 $\therefore 2^{6x-9} = 2^{8-4x}$
 $\therefore 6x - 9 = 8 - 4x$ {equating indices}
 $\therefore 10x = 17$
 $\therefore x = \frac{17}{10}$

d
$$25^x + 2(5^x) = 35$$

 $\therefore (5^x)^2 + 2(5^x) - 35 = 0$
 $\therefore (5^x - 5)(5^x + 7) = 0$
 $\therefore 5^x = 5 \text{ or } 5^x = -7$
 $\therefore 5^x = 5^1 \quad \{5^x > 0 \text{ for all } x\}$
 $\therefore x = 1 \quad \{\text{equating indices}\}$

20 a
$$\log_4 8$$

 $= \log_4 (2 \times 4)$
 $= \log_4 (\sqrt{4} \times 4)$
 $= \log_4 (4^{\frac{1}{2}} \times 4^1)$
 $= \log_4 (4^{\frac{3}{2}})$
 $= \frac{3}{2}$

$$\log_9\left(\frac{1}{27}\right)$$

$$= \log_9\left(\frac{1}{9 \times 3}\right)$$

$$= \log_9\left(\frac{1}{9 \times \sqrt{9}}\right)$$

$$= \log_9\left(\frac{1}{9^{\frac{3}{2}}}\right)$$

$$= \log_9(9^{-\frac{3}{2}})$$

$$= -\frac{3}{2}$$

$$\log_9\left(\frac{1}{3\sqrt{3}}\right)$$

$$= \log_9\left(\frac{1}{3^{\frac{3}{2}}}\right)$$

$$= \log_9\left(\frac{1}{(\sqrt{9})^{\frac{3}{2}}}\right)$$

$$= \log_9\left(\frac{1}{9^{\frac{3}{4}}}\right)$$

$$= \log_9(9^{-\frac{3}{4}})$$

$$= -\frac{3}{4}$$

21 a
$$\log_3 x = 2$$

$$\therefore x = 3^2 = 9$$

b
$$\log_x 27 = 3$$

 $\therefore 27 = x^3$
 $\therefore x = 3$

$$\begin{array}{ll} \bullet & \log_5(2x-1) = 1 \\ & \therefore & 2x-1 = 5^1 \\ & \therefore & 2x-1 = 5 \\ & \therefore & 2x = 6 \\ & \therefore & x = 3 \end{array}$$

$$\log_a(x+2) = \log_a x + 2$$

$$\therefore \log_a(x+2) - \log_a x = 2$$

$$\therefore \log_a\left(\frac{x+2}{x}\right) = 2$$

$$\therefore \frac{x+2}{x} = a^2$$

$$\therefore x+2 = a^2x$$

$$\therefore (1-a^2)x = -2$$

$$\therefore x = \frac{-2}{1-a^2} = \frac{2}{a^2-1} \quad \{a > 1\}$$

23 a
$$\frac{1}{4} \ln 81 + \ln 12 - \ln 4$$

= $\frac{1}{4} \ln (3^4) + \ln (3 \times 4) - \ln 4$
= $\frac{1}{4} (4 \ln 3) + \ln 3 + \ln 4 - \ln 4$
= $\ln 3 + \ln 3$
= $2 \ln 3$
= $\ln (3^2)$
= $\ln 9$
6 $5 + \log_2 3 - \frac{1}{2} \log_2 49 = 5 + \log_2 3$

$$\begin{array}{l} {\bf c} & 5+\log_2 3 - \frac{1}{2}\log_2 49 = 5+\log_2 3 - \log_2 (49^{\frac{1}{2}}) \\ & = \log_2 (2^5) + \log_2 3 - \log_2 7 \\ & = \log_2 (32\times 3) - \log_2 7 \\ & = \log_2 \left(\frac{96}{7}\right) \end{array}$$

$$\begin{array}{ll} \textbf{b} & 3 \log_9 2 - \log_9 24 \\ &= 3 \log_9 2 - \log_9 (8 \times 3) \\ &= 3 \log_9 2 - \log_9 (2^3 \times 9^{\frac{1}{2}}) \\ &= 3 \log_9 2 - \left(\log_9 (2^3) + \log_9 (9^{\frac{1}{2}}) \right) \\ &= 3 \log_9 2 - \left(3 \log_9 2 + \frac{1}{2} \right) \\ &= -\frac{1}{2} \end{array}$$

26 a
$$3\log_5 x = \log_5 24 + \log_5(\frac{1}{3})$$

 $\therefore \log_5(x^3) = \log_5(\frac{24}{3})$
 $\therefore \log_5(x^3) = \log_5 8$
 $\therefore x^3 = 8$

x = 2

$$\ln(x^2 - 3) - \ln(2x) = 0$$

$$\therefore \ln\left(\frac{x^2 - 3}{2x}\right) = 0$$

$$\therefore \frac{x^2 - 3}{2x} = e^0 = 1$$

$$\therefore x^2 - 3 = 2x$$

$$\therefore x^2 - 2x - 3 = 0$$

$$\therefore (x - 3)(x + 1) = 0$$

$$\therefore x = 3 \text{ or } -1$$

But x=-1 does not satisfy the original equation, as $\ln(-2)$ is undefined.

 \therefore the only solution is x=3.

30 a
$$9^x - 6(3^x) + 8 = 0$$

 $\therefore (3^x)^2 - 6(3^x) + 8 = 0$
 $\therefore (3^x - 4)(3^x - 2) = 0$
 $\therefore 3^x = 4 \text{ or } 2$
 $\therefore \log(3^x) = \log 4 \text{ or } \log 2$
 $\therefore x \log 3 = \log 4 \text{ or } \log 2$
 $\therefore x = \frac{\log 4}{\log 3} \text{ or } \frac{\log 2}{\log 3}$
6 $2 \times 3^{2x} + 3^{x+1} = 5$
 $\therefore 2 \times (3^x)^2 + 3(3^x) - 5 = 0$
 $\therefore 2 \times (3^x)^2 - 2(3^x) + 5(3^x) - 5 = 0$
 $\therefore 2(3^x)(3^x - 1) + 5(3^x - 1) = 0$
 $\therefore (3^x - 1)(2(3^x) + 5) = 0$
 $\therefore 3^x = 1 \quad \{3^x > 0\}$
 $\therefore \log(3^x) = \log 1$
 $\therefore x \log 3 = 0$
 $\therefore x = 0$

...0217/

24
$$x = \log_a 5$$

a $\log_a (5a) = \log_a 5 + \log_a a$
 $= x + 1$

$$\begin{array}{ll} \mathbf{b} & \log_a \left(\frac{125}{a^2}\right) \\ &= \log_a 125 - \log_a (a^2) \\ &= \log_a (5^3) - 2 \\ &= 3\log_a 5 - 2 \\ &= 3x - 2 \end{array}$$

$$\log_2 x = \log_2 12 - \log_2 (7 - x)$$

$$\therefore \log_2 x = \log_2 \left(\frac{12}{7 - x}\right)$$

$$\therefore x = \frac{12}{7 - x}$$

$$\therefore x(7 - x) = 12$$

$$\therefore 7x - x^2 = 12$$

$$\therefore x^2 - 7x + 12 = 0$$

$$\therefore (x - 3)(x - 4) = 0$$

$$\therefore x = 3 \text{ or } 4$$

d
$$\log_3 x + \log_3 (x-2) = 1$$

 $\therefore \log_3 (x(x-2)) = 1$
 $\therefore x(x-2) = 3$
 $\therefore x^2 - 2x - 3 = 0$
 $\therefore (x-3)(x+1) = 0$
 $\therefore x = 3 \text{ or } -1$

But x = -1 does not satisfy the original equation, as $log_3(-1)$ is undefined.

 \therefore the only solution is x=3.

b
$$25^x - 5^{x+1} + 6 = 0$$

 $\therefore (5^x)^2 - 5(5^x) + 6 = 0$
 $\therefore (5^x - 2)(5^x - 3) = 0$
 $\therefore 5^x = 2 \text{ or } 3$
 $\therefore \log(5^x) = \log 2 \text{ or } \log 3$
 $\therefore x \log 5 = \log 2 \text{ or } \log 3$
 $\therefore x = \frac{\log 2}{\log 5} \text{ or } \frac{\log 3}{\log 5}$

- **a** When t = 0, N = 120
 - ... there were 120 people who started the settlement.
- **b** When t=4,

$$N = 120 \times (1.04)^4$$

 ≈ 140

: there were about 140 people on the island after 4 years.

• When
$$N = 120 \times 2 = 240$$
,

$$240 = 120 \times (1.04)^t$$

$$(1.04)^t = 2$$

$$t \ln(1.04) = \ln 2$$

$$\therefore t = \frac{\ln 2}{\ln(1.04)}$$

$$\approx 17.7$$

: it will take about 17.7 years for the number of people to double.

52
$$T(t) = A \times B^{-t} + 3$$

I The initial internal temperature of the refrigerator was 27°C.

So,
$$T(0) = 27$$

 $\therefore 27 = A + 3$

 $\therefore 27 = A + 3$ $\therefore A = 24$

$$T(t) = 24 \times 2^{-t} + 3 \quad \{\text{using a}\}$$

$$\therefore T(5) = 24 \times 2^{-5} + 3$$

$$= 3.75$$

... the internal temperature is 3.75°C after 5 hours.

ii After 3 hours, the internal temperature was 6°C.

So,
$$T(3) = 6$$

 $\therefore 6 = 24 \times B^{-3} + 3 \quad \{\text{using } \mathbf{i}\}$
 $\therefore 24 \times B^{-3} = 3$
 $\therefore B^{-3} = \frac{1}{8}$
 $\therefore B^3 = 8$
 $\therefore B = 2$

c As $t \to \infty$, $2^{-t} \to 0$

$$T(t) \rightarrow 24 \times 0 + 3 = 3$$

... the minimum temperature that the refrigerator could be expected to reach is 3°C.

54
$$P = 1000 + ae^{kn}$$

The initial population was 2000, so when n = 0, P = 2000

∴
$$2000 = 1000 + ae^0$$

∴ $a = 1000$
∴ $P = 1000 + 1000e^{kn}$

After 1 year, the population was 4000, so when $n = 1 \times 12 = 12$, P = 4000

∴
$$4000 = 1000 + 1000e^{12k}$$

∴ $1000e^{12k} = 3000$
∴ $e^{12k} = 3$
∴ $e^k = 3^{\frac{1}{12}}$
∴ $P = 1000 + 1000 \times 3^{\frac{n}{12}}$

Now, when $P = 10\,000$, $10\,000 = 1000 + 1000 \times 3^{\frac{n}{12}}$

∴
$$9000 = 1000 \times 3^{\frac{n}{12}}$$

∴ $3^{\frac{n}{12}} = 9$
∴ $3^{\frac{n}{12}} = 3^2$

$$\therefore \frac{n}{12} = 2 \quad \{\text{equating indices}\}\$$

$$n = 24$$

: it will take 24 months, or 2 years, for the population to reach 10 000.