1. Solve the equation $2\cos^2 x = \sin 2x$ for $0 \le x \le \pi$, giving your answers in terms of π .

(Total 6 marks)

2. Solve the equation $2\cos x = \sin 2x$, for $0 \le x \le 3\pi$. (Total 7 marks)

- 3. (a) Show that $4 \cos 2\theta + 5 \sin \theta = 2 \sin^2 \theta + 5 \sin \theta + 3$.
 - (b) **Hence**, solve the equation $4 \cos 2\theta + 5 \sin \theta = 0$ for $0 \le \theta \le 2\pi$.

(5) (Total 7 marks)

(2)

4. Solve $\cos 2x - 3 \cos x - 3 - \cos^2 x = \sin^2 x$, for $0 \le x \le 2\pi$.

(Total 7 marks)

- 5. Consider the equation $3 \cos 2x + \sin x = 1$
 - (a) Write this equation in the form f(x) = 0, where $f(x) = p \sin^2 x + q \sin x + r$, and $p, q, r \in \mathbb{Z}$.
 - (b) Factorize f(x).
 - (c) Write down the number of solutions of f(x) = 0, for $0 \le x \le 2\pi$.

(Total 6 marks)