- 1. (a) Given that $2\sin^2\theta + \sin\theta 1 = 0$, find the two values for $\sin\theta$.
 - (b) Given that $0^{\circ} \le \theta \le 360^{\circ}$ and that one solution for θ is 30°, find the other two possible values for θ .

(2) (Total 6 marks)

- 2. (a) Factorize the expression $3\sin^2 x 11\sin x + 6$.
 - (b) Consider the equation $3\sin^2 x 11\sin x + 6 = 0$.
 - (i) Find the two values of $\sin x$ which satisfy this equation,
 - (ii) Solve the equation, for $0^{\circ} \le x \le 180^{\circ}$.

(Total 6 marks)

- 3. Consider the trigonometric equation $2 \sin^2 x = 1 + \cos x$.
 - (a) Write this equation in the form f(x) = 0, where $f(x) = a \cos^2 x + b \cos x + c$, and $a, b, c \in \mathbb{Z}$.
 - (b) Factorize f(x).
 - (c) Solve f(x) = 0 for $0^{\circ} \le x \le 360^{\circ}$.

(Total 6 marks)

- 4. (a) Write the expression $3\sin^2 x + 4\cos x$ in the form $a\cos^2 x + b\cos x + c$.
 - (b) Hence or otherwise, solve the equation

 $3\sin^2 x + 4\cos x - 4 = 0,$ $0^\circ \le x \le 90^\circ.$

(Total 4 marks)

- 5. (a) Express $2\cos^2 x + \sin x$ in terms of $\sin x$ only.
 - (b) Solve the equation $2\cos^2 x + \sin x = 2$ for x in the interval $0 \le x \le \pi$, giving your answers exactly.

(Total 4 marks)

6. Solve the equation $3 \sin^2 x = \cos^2 x$, for $0^\circ \le x \le 180^\circ$.

(Total 4 marks)