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A function x ↦ f  (x) is called algebraic if, substituting for the number x 
in the domain, the corresponding number f  (x) in the range can be 
computed using a finite number of elementary operations (i.e. addition, 
subtraction, multiplication, division, and extracting a root). For example, 

f  (x) 5   
x 2 1   √

_____
 9 2 x  
 ___________ 

2x 2 6
   is algebraic. For our purposes in this course, functions 

can be organized into three categories: 

1. Algebraic functions

2. Exponential and logarithmic functions (Chapter 5) 

3. Trigonometric and inverse trigonometric functions (Chapter 7)

The focus of this chapter is algebraic functions of a single variable which – 
given the definition above – are functions that contain polynomials, radicals 
(surds), rational expressions (quotients), or a combination of these. The 
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chapter will begin by looking at polynomial functions in general and then 
moves onto a closer look at 2nd degree polynomial functions (quadratic 
functions). Solving equations containing polynomial functions is an 
important skill that will be covered. We will also study rational functions, 
which are quotients of polynomial functions and the associated topic of 
partial fractions (optional). The chapter will close with methods of solving 
inequalities and absolute value functions, and strategies for solving various 
equations.

 3.1 Polynomial functions

The most common type of algebraic function is a polynomial function 
where, not surprisingly, the function’s rule is given by a polynomial.  
For example,

f  (x) 5 x 3,   h(t) 5 22t 2 1 16t 2 24,   g(y) 5 y 5 1 y 4 2 11y 3 1 7y 2 1 10y 2 8

Recalling the definition of a polynomial, we define a polynomial function.

Definition of a polynomial function in the variable x
A polynomial function P is a function that can be expressed as

 P(x) 5 anxn 1 an 2 1xn 2 1 1 … 1 a1x 1 a0,   an  0

where the non-negative integer n is the degree of the polynomial function. The 
numbers a0, a1, a2, …, an, are real numbers and are the coefficients of the polynomial. 
an is the leading coefficient, anxn is the leading term and a0 is the constant term.

It is common practice to use subscript notation for coefficients of general 
polynomial functions, but for polynomial functions of low degree, the 
following simpler forms are often used.

Degree Function form Function name Graph

Zero P(x) 5 a Constant function Horizontal line

First P(x) 5 ax 1 b Linear function Line with slope a

Second P(x) 5 ax 2 1 bx 1 c Quadratic function Parabola (-shape, 1 turn)

Third P(x) 5 ax 3 1 bx 2 1 cx 1 d Cubic function  -shape (2 or no turns)

To identify an individual term in a polynomial function, we use the 
function name correlated with the power of x contained in the term. 
For example, the polynomial function f (x) 5 x 3 2 9x 1 4 has a cubic term 
of x 3, no quadratic term, a linear term of 29x, and a constant term of 4. 

For each polynomial function P(x) there is a corresponding polynomial 
equation P(x) 5 0. When we solve polynomial equations, we often refer to 
solutions as roots.

The concept of a function is a 
fairly recent development in 
the history of mathematics. 
Its meaning started to gain 
some clarity about the time of 
René Descartes (1596–1650) 
when he defined a function 
to be any positive integral 
power of x (i.e. x 2, x 3, x 4, 
etc.). Leibniz (1646–1716) and 
Johann Bernoulli (1667–1748) 
developed the concept further. 
It was Euler (1707–1783) who 
introduced the now standard 
function notation y 5 f (x). 

Table 3.1 Features of polynomial 
functions of low degree.

 Hint: When working with a 
polynomial function, such as  
f (x) 5 x 3 2 9x 1 4, it is common 
to refer to it in a couple of different 
ways – either as ‘the polynomial f (x)‘, 
or as ‘the function x 3 2 9x 1 4.’
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Zeros and roots
If P is a function and c is a number such that P(c) 5 0, then c is a zero of the function 
P (or of the polynomial P) and x 5 c is a root of the equation P(x) 5 0.

Approaches to finding zeros of various polynomial functions will be 
considered in the first three sections of this chapter. 

Graphs of polynomial functions
As we reviewed in Section 1.6, the graph of a first-degree polynomial 
function (linear function), such as P(x) 5 2x 2 5, is a line (Figure 3.1a). 
The graph of every second-degree polynomial function (quadratic 
function) is a parabola (Figure 3.1b). A thorough review and discussion of 
quadratic functions and their graphs is in the next section.

The simplest type of polynomial function is one whose rule is given by a 
power of x. In Figure 3.1, the graphs of P(x) 5 x n for n 5 1, 2, 3, 4, 5 and 
6 are shown. As the figure suggests, the graph of P(x) 5 x n has the same 
general -shape as y 5 x 2 when n is even, and the same general  shape 
as y 5 x 3 when n is odd. However, as the degree n increases, the graphs of 
polynomial functions become flatter near the origin and steeper away from 
the origin. 

Another interesting observation is that, depending on the degree of the 
polynomial function, its graph displays a certain type of symmetry. The 
graph of P(x) 5 x n is symmetric with respect to the origin when n is odd. 
Such a function is aptly called an odd function. The graph of P(x) 5 x n is 

 Hint: The use of the word ‘root’ 
here to denote the solution of a 
polynomial equation should not be 
confused with the use of the word 
in the context of square root, cube 
root, fifth root, etc.
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Figure 3.1 Graphs of P(x) 5 xn for 
increasing n.
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symmetric with respect to the y-axis when n is even. Accordingly any such 
function is called an even function. Formal definitions for odd and even 
functions will be presented in Chapter 7 when we investigate the graphs of 
the sine and cosine functions.

The graphs of polynomial functions that are not in the form P(x) 5 x n are 
more difficult to sketch. However, the graphs of all polynomial functions 
share these properties:

1. It is a smooth curve (i.e. it has no sharp, pointed turns – only smooth, 
rounded turns).

2. It is continuous (i.e. it has no breaks, gaps or holes).

3. It rises (P(x) → ) or falls (P(x) → 2) without bound as x → 1 or 
x → 2.

4. It extends on forever both to the left (2) and to the right (1); 
domain is R.

5. The graph of a polynomial function of degree n has at most n 2 1 
turning points.

If we wish to sketch the graph of a polynomial function without a GDC, 
we need to compute some function values in order to locate a few points 
on the graph. This could prove to be quite tedious if the polynomial 
function has a high degree. We will now develop a method that provides 

Note that the graph of an even 
function may or may not 
intersect the x-axis (x-intercept). 
As we will see, where and how 
often the graph of a function 
intersects the x­-axis is helpful 
information when trying to 
determine the value and nature 
of the roots of a polynomial 
equation P(x) 5 0.

The property that is listed 
third of the five properties 
of the graphs of polynomial 
functions is referred to as the 
end behaviour of the function 
because it describes how the 
curve behaves at the left and 
right ends (i.e. as x → 1 and 
as x → 2). The end behaviour 
of a polynomial function is 
determined by its degree 
and by the sign of its leading 
coefficient. See Exercise 3.1, Q11. 

Not all polynomial functions are even or 
odd – that is, not all polynomial functions 
display rotation symmetry about the origin 
or reflection symmetry about the y-axis. 
For example, the graph of the polynomial 
function y 5 x 2 1 x 1 1 is neither even 
nor odd. It has line symmetry, but the line 
of symmetry is not the y-axis.

0 x

y

3

4

2

1

1 2

Figure 3.2 The graph of a 
polynomial function is a smooth, 
unbroken, continuous curve, such 
as the ones shown here. 

jump

sharp
corner

sharp
corner

gap
gap hole

Figure 3.3 There can be no 
jumps, gaps, holes or sharp corners 
on the graph of a polynomial 
function. Thus none of the 
functions whose graphs are shown 
here are polynomial functions. 
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an efficient procedure for evaluating polynomial functions. It will also 
be useful in the third section of this chapter for some situations when we 
divide polynomials. For simplicity, we give the method for a fourth-degree 
polynomial, but it is applicable to any nth degree polynomial.

Synthetic substitution (Optional)
Suppose we want to find the value of P(x) 5 a4x 4 1 a3x  3 1 a2x 2 1 a1x  1 a0 
when x 5 c, that is, find P(c). The computation of c 4 may be tricky, so 
rather than substituting c directly into P(x) we will take a gradual approach 
that consists of a sequence of multiplications and additions. We define  
b4, b3, b2, b1, and R by the following equations.

b4 5 a4 (1)

b3 5 b4c 1 a3 (2)

b2 5 b3c 1 a2 (3)

b1 5 b2c 1 a1 (4)

R 5 b1c 1 a0 (5)

Our goal is to show that the value of P(c) is equivalent to the value of 
R. Firstly, we substitute the expression for b3 given by equation (2) into 
equation (3), and also use equation (1) to replace b4 with a4, to produce

b2 5 (a4c 1 a3)c 1 a2

 5 a4c  2 1 a3c 1 a2 (6)

We now substitute this expression for b2 in (6) into (4) to give

b1 5 (a4c  2 1 a3c 1 a2)c 1 a1

 5 a4c  3 1 a3c 2 1 a2c 1 a1 (7)

To complete our goal we substitute this expression for b1 in (7) into (5) to 
give

R 5 (a4c  3 1 a3c 2 1 a2c 1 a1)c 1 a0

 5 a4c  4 1 a3c  3 1 a2c 2 1 a1c 1 a0 (8)

This is the value of P(x) when x 5 c. If we condense (6), (7) and (8) into 
one expression, we obtain

R 5 {[(a4c  1 a3)c 1 a2]c 1 a1}c 1 a0

 5 a4c  4 1 a3c  3 1 a2c 2 1 a1c 1 a0 5 P(c) (9)

Carrying out the computations for equation (9) can be challenging. 
However, a nice pattern can be found if we closely inspect the expression 
{[(a4c  1 a3)c 1 a2]c 1 a1}c 1 a0. Each nested computation involves finding 
the product of c and one of the coefficients, an, (starting with the leading 
coefficient) and then adding the next coefficient – and repeating this 
process until the constant term is used. Hence, the actual computation of R 
is quite straightforward if we arrange the nested computations required for 
(9) in the following systematic manner.
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c a4 a3 a2 a1 a0

c 3 b4 c 3 b3 c 3 b2 c 3 b1

b4 b3 b2 b1 R 5 P(c)

In this procedure we place c in a small box to the upper left. The 
coefficients of the polynomial function P(x) are placed in the first line. We 
start by simply rewriting the leading coefficient below the horizontal line 
(remember b4 5 a4). The diagonal arrows indicate that we multiply the 
number in the row below the line by c to obtain the next number in the 
second row above the line. Each bn after the leading coefficient is obtained 
by adding the two numbers in the first and second rows directly above bn. 
At the end of the procedure, the last such sum is R 5 P(c). This method of 
computing the value of P(x) when x 5 c is called synthetic substitution.

Example 1 – Using synthetic substitution to find function values  

Given P(x) 5 2x 4 1 6x 3 2 5x 2 1 7x 2 12, find the value of P(x) when 
x 5 24, 21 and 2.

Solution

We use the procedure for synthetic substitution just described.

24 2 6 25 7 212

28 8 212 20

2 22 3 25 8 5 P(24)

Therefore, P(24) 5 8.

Note: Contrast using synthetic substitution to evaluate P(24) with using 
direct substitution.

P(24) 5 2(24)4 1 6(24)3 2 5(24)2 1 7(24) 2 12

5 2(256) 1 6(264) 2 5(16) 2 28 2 12

5 512 2 384 2 80 2 28 2 12

5 128 2 108 2 12

5 8

21 2 6 25 7 212

22 24 9 216

2 4 29 16 228 5 P(21)

Therefore, P(21) 5 228.
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2 2 6 25 7 212

4 20 30 74

2 10 15 37 62 5 P(2)

Therefore, P(2) 5 62.

Since the graphs of all polynomial functions are continuous (no gaps or holes), 
then the function values we computed for the quartic polynomial function 
in Example 1 can give us information about the location of its zeros (i.e. 
x-intercepts of the graph). Since P(24) 5 8 and P(21) 5 228, then the 
graph of P(x) must cross the x-axis (P(x) 5 0) at least once between x 5 24 
and x 5 21. Also, with P(21) 5 228 and P(2) 5 62 there must be at least one 
x-intercept between x 5 21 and x 5 2. Hence, the polynomial equation 
P(x) 5 2x 4 1 6x 3 2 5x 2 1 7x 2 12 5 0 has at least one real root between 
24 and 21, and at least one real root between 21 and 2. In Section 3.3 we 
will investigate real zeros of polynomial functions and then we will extend the 
investigation to include imaginary zeros, thereby extending the universal set  
for solving polynomial equations from the real numbers to complex numbers. 

Graphing P(x) 5 2x 4 1 6x 3 2 5x 2 1 7x 2 12 on our GDC, we observe that 
the graph of P(x) does indeed intersect the x-axis between 24 and 21 (just 
slightly greater than x 5 24), and again between 21 and 2 (near x 5 1).
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Example 2 

Use synthetic substitution to find the y-coordinates of the points on the 
graph of f  (x) 5 x  3 2 4x  2 1 24 for x 5 23, 21, 1, 3 and 5. Sketch the graph 
of f for 24 < x < 6.

Solution

Important: In order for the method of synthetic substitution to work 
properly it is necessary to insert 0 for any ‘missing’ terms in the polynomial. 
The polynomial x  3 2 4x  2 1 24 has no linear term so the top row in the set-
up for synthetic substitution must be 1  24  0  24.

 Hint: For some values of 
x, evaluating P(x) by direct 
substitution may be quicker than 
using synthetic substitution. This is 
certainly true when x 5 0 or x 5 1. 
For example, it is easy to determine 
that P(0) 5 212 for the polynomial 
P in Example 1; and that 
P(1) 5 2 1 6 2 5 1 7 2 12 5 22.
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Therefore, the points (23, 239), (21, 19), (1, 21), (3, 15) and (5, 49) are on 
the graph of f and have been plotted in the coordinate plane below. 
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Recall that the end behaviour of a polynomial function is determined by  
its degree and by the sign of its leading coefficient. Since the leading term 
of f is x  3 then its graph will fall (y → 2) as x → 2 and will rise 
(y → ) as x → 1. Also a polynomial function of degree n has at most 
n 2 1 turning points; therefore, the graph of f   has at most two turning 
points. Given the coordinates of the five points found with the aid of 
synthetic substitution, there will clearly be exactly two turning points. The 
graph of f can now be accurately sketched.
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Exercise 3.1

In questions 1–4, use synthetic substitution to evaluate P(x) for the given values 
of x.

 1 P(x) 5 x 4 1 2x 3 2 3x  2 2 4x 2 20,  x 5 2, x 5 23

 2 P(x) 5 2x 5 2 x 4 1 3x  3 2 15x 2 9,  x 5 21, x 5 2

 3 P(x) 5 x 5 1 5x 4 1 3x  3 2 6x  2 2 9x 1 11,  x 5 22, x 5 4

 4 P(x) 5 x 3 2 (c 1 3)x  2 1 (3c 1 5)x 2 5c,  x 5 c, x 5 2

 5 Given P(x) 5 kx 3 1 2x 2 2 10x 1 3, for what value of k is P(22) 5 15?

 6 Given P(x) 5 3x 4 2 2x 3 2 10x2 1 3kx 1 3, for what value of k is x 5 2   1 _ 3   a zero 
of P(x)?

For questions 7 and 8, do not use your GDC.

 7  a) Given y 5 2x 3 1 3x 2 2 5x 2 4, determine the y-value for each value of x 
  such that x  {23, 22, 21, 0, 1, 2, 3}.

b) How many times must the graph of y 5 2x 3 1 3x 2 2 5x 2 4 cross the x-axis? 

c) Sketch the graph of y 5 2x 3 1 3x 2 2 5x 2 4.

 8 a) Given y 5 x 4 2 4x 2 2 2x 1 1, determine the y-value for each value of x  
 such that x  {23, 22, 21, 0, 1, 2, 3}.

b) How many times must the graph of y 5 x 4 2 4x 2 2 2x 1 1 cross the x-axis? 

c) Sketch the graph of y 5 x 4 2 4x 2 2 2x 1 1.

 9 Given f  (x) 5 x 3 1 ax 2 2 5x 1 7a, find a so that f  (2) 5 10.

10 Given f  (x) 5 bx 3 2 5x 2 1 2bx 1 10, find b so that f  (  √
__

 3  ) 5 220.

11 There are four possible end behaviours for a polynomial function P(x). 
These are: 

as x → , P(x) →  and as x → 2, P(x) →      or symbolically (↖, ↗)

as x → , P(x) → 2 and as x → 2, P(x) →      or symbolically (↖, ↘)

as x → , P(x) → 2 and as x → 2, P(x) → 2     or symbolically (↙, ↘)

as x → , P(x) →  and as x → 2, P(x) → 2     or symbolically (↙, ↗)

a) By sketching a graph on your GDC, state the type of end behaviour for each 
of the polynomial functions below.

 (i) P(x) 5 2x 4 2 6x 3 1 x 2 1 4x 2 1
 (ii) P(x) 5 22x 4 2 6x 3 1 x 2 1 4x 2 1
 (iii) P(x) 5 26x 3 1 x 2 1 4x 2 1
 (iv) P(x) 5 6x 3 1 x 2 2 4x 2 1
 (v) P(x) 5 x 2 2 4x 2 1
 (vi) P(x) 5 22x 6 1 x 5 1 2x 4 2 3x 3 1 4x 2 2 x 1 1
 (vii) P(x) 5 x 5 1 2x 4 2 x 3 1 x 2 2 x 1 1 
 (viii) P(x) 5 2x 5 1 2x 4 2 x 3 1 x 2 2 x 1 1

b) Use your results from a) to write a general statement about how the 
leading term of a polynomial function, anxn, determines what type of end 
behaviour the graph of the function will display. Be specific about how the 
characteristics of the coefficient, an, and the power, n, of the leading term 
affect the function’s end behaviour.



99

    Quadratic functions

A linear function is a polynomial function of degree one that can be 
written in the general form f (x) 5 ax 1 b where a  0. Linear equations 
were briefly reviewed in Section 1.6. It is clear that any linear function will 

have a single solution (root) of x 5 2   b __ 
a

  . In essence, this is a formula that 

gives the zero of any linear polynomial.

In this section, we will focus on quadratic functions – functions consisting 
of a second-degree polynomial that can be written in the form  
f (x) 5 ax2 1 bx 1 c such that a  0. You are probably familiar with the 
quadratic formula that gives the zeros of any quadratic polynomial. We will 
also investigate other methods of finding zeros of quadratics and consider 
important characteristics of the graphs of quadratic functions.

Definition of a quadratic function
If a, b and c are real numbers, and a  0, the function f (x) 5 ax2 1 bx 1 c is a quadratic 
function. The graph of f is the graph of the equation y 5 ax2 1 bx 1 c and is called a 
parabola. 

Each parabola is symmetric about a vertical line called its axis of 
symmetry. The axis of symmetry passes through a point on the parabola 
called the vertex of the parabola, as shown in Figure 3.4. If the leading 
coefficient, a, of the quadratic function f (x) 5 ax 2 1 bx 1 c  is positive, the 
parabola opens upward (concave up) – and the y-coordinate of the vertex 
will be a minimum value for the function. If the leading coefficient, a, of 
f (x) 5 ax 2 1 bx 1 c is negative, the parabola opens downward (concave 
down) – and the y-coordinate of the vertex will be a maximum value for 
the function.

The graph of f (x) 5 a(x 2 h)2 1 k
From the previous chapter, we know that the graph of the equation  
y 5 (x 1 3)2 1 2 can be obtained by translating y 5 x 2 three units to 
the left and two units up. Being familiar with the shape and position of the 
graph of y 5 x 2, and knowing the two translations that transform y 5 x 2 to 

The word quadratic comes 
from the Latin word quadratus 
that means four-sided, to make 
square, or simply a square. 
Numerus quadratus means 
a square number. Before 
modern algebraic notation 
was developed in the 17th and 
18th centuries, the geometric 
figure of a square was used to 
indicate a number multiplying 
itself. Hence, raising a number 
to the power of two (in modern 
notation) is commonly referred 
to as the operation of squaring. 
Quadratic then came to be 
associated with a polynomial of 
degree two rather than being 
associated with the number 
four, as the prefix quad often 
indicates (e.g. quadruple).

x
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Figure 3.4 'Concave up' and 
'concave down' parabolas.
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y 5 (x 1 3)2 1 2, we can easily visualize and/or sketch the graph of 
y 5 (x 1 3)2 1 2 (see Figure 3.5). We can also determine the axis of 
symmetry and the vertex of the graph. Figure 3.6 shows that the graph of  
y 5 (x 1 3)2 1 2 has an axis of symmetry of x 5 23 and a vertex at (23, 2). 
The equation y 5 (x 1 3)2 1 2 can also be written as y 5 x 2 1 6x 1 11. 
Because we can easily identify the vertex of the parabola when the equation 
is written as y 5 (x 1 3)2 1 2, we often refer to this as the vertex form of the 
quadratic equation, and y 5 x 2 1 6x 1 11 as the general form.

Vertex form of a quadratic function
If a quadratic function is written in the form f (x) 5 a(x 2 h)2 1 k, with a  0, the graph 
of f has an axis of symmetry of x 5 h and a vertex at (h, k).

Completing the square

For visualizing and sketching purposes, it is helpful to have a quadratic 
function written in vertex form. How do we rewrite a quadratic function 
written in the form f (x) 5 ax 2 1 bx 1 c (general form) into the form 
f (x) 5 a(x 2 h)2 1 k (vertex form)? We use the technique of completing 
the square. 

For any real number p, the quadratic expression x 2 1 px 1  (   p __ 
2

   ) 
2
 is the 

square of  ( x 1   
p

 __ 
2

   ) . Convince yourself of this by expanding  ( x 1   
p

 __ 
2

   ) 
2
. The 

technique of completing the square is essentially the process of adding a 
constant to a quadratic expression to make it the square of a binomial. If 
the coefficient of the quadratic term (x 2) is positive one, the coefficient 

of the linear term is p, and the constant term is  (   p __ 
2

   ) 
2
, then

x 2 1 px 1  (   p __ 
2

   ) 
2
 5  ( x 1   

p
 __ 

2
   ) 

2
 and the square is completed. 

Remember that the coefficient of the quadratic term (leading coefficient) 
must be equal to positive one before completing the square.

y � (x � 3)2

y � (x � 3)2 � 2

y � x2

y

x

2

4

6

8

�2�4�6 2

2 units up

3 units left

0

y � (x � 3)2 � 2
y

x

2

4

6

8

�1�2�3�4�5�6 1

axis of symmetry

vertex (�3, 2)

x � �3

0

Figure 3.5 Translating y 5 x2 to give 
y 5 (x 1 3)2 1 2.

Figure 3.6 The axis of symmetry and the 
vertex.

 Hint: f (x) 5 a(x 2 h)2 1 k 
is sometimes referred to as the 
standard form of a quadratic 
function.
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Example 3 

Find the equation of the axis of symmetry and the coordinates of the 
vertex of the graph of f (x) 5 x 2 2 8x 1 18 by rewriting the function in the 

form x 2 1 px 1  (   p __ 
2

   ) 
2
.

Solution

To complete the square and get the quadratic expression x 2 2 8x 1 18 in 

the form x 2 1 px 1  (   p __ 
2

   ) 
2
, the constant term needs to be  (   28 ___ 

2
   ) 

2
 5 16. 

We need to add 16, but also subtract 16, so that we are adding zero overall 
and, hence, not changing the original expression.

f (x) 5 x 2 2 8x 1 16 2 16 1 18  Actually adding zero (216 1 16) to the right 
side.

f (x) 5 x 2 2 8x 1 16 1 2 x 2 2 8x 1 16 fits the pattern x 2 1 px 1  (   p _ 
2

   ) 
2

 with p 5 28.

f (x) 5 (x 2 4)2 1 2 x 2 2 8x 1 16  5 (x 2 4)2

The axis of symmetry of the graph of f is the vertical line x 5 4 and the 
vertex is at (4, 2). See Figure 3.7.

Example 4 – Properties of a parabola 

For the function g  :  x ↦ 22x 2 2 12x 1 7,
a) find the axis of symmetry and the vertex of the graph
b) indicate the transformations that can be applied to y 5 x 2 to obtain 

the graph
c) find the minimum or maximum value. 

Solution
a) g  :  x ↦ 22 ( x 2 1 6x 2   7 __ 

2
   )  Factorize so that the coefficient of the   

  quadratic term is 11.

  g  :  x ↦ 22 ( x 2 1 6x 1 9 2 9 2   7 __ 
2

   )   p 5 6 ⇒ (    p _ 
2

   ) 
2
  5  9; hence, add 19 2 9 

(zero)

 g  :  x ↦ 22 [ (x 1 3)2 2   18 ___ 
2

   2   7 __ 
2

   ]  x 2 1 6x 1 9 5 (x 1 3)2

 g  :  x ↦ 22 [ (x 1 3)2 2   25 ___ 
2

   ] 
 g  :  x ↦ 22(x 1 3)2 1 25  Multiply through by 22 to 

remove outer brackets.

 g  :  x ↦ 22(x 2(23))2 1 25 Express in vertex form:
  g  :  x ↦ a(x 2 h)2 1 k

The axis of symmetry of the graph of g is the vertical line x 5 23 and 
the vertex is at (23, 25). See Figure 3.8.

b) Since g  :  x ↦ 22x 2 2 12x 1 7 5 22(x 1 3)2 1 25, the graph of g can 
be obtained by applying the following transformations (in the order 
given) on the graph of y 5 x 2: horizontal translation of 3 units left; 

x

y � x2 � 8x � 18

x � 4

(4, 2)

y

5

10

15

20

2 4 6 80

Figure 3.7

Figure 3.8

x

y � �2x2 � 12x � 7

x � �3

�5

5

10

15

20

25

30

2�2�4�6�8

y

(�3, 25)

0
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reflection in the x-axis (parabola opening down); vertical stretch of 
factor 2; and a vertical translation of 25 units up.

c) The parabola opens down because the leading coefficient is negative. 
Therefore, g has a maximum and no minimum value. The maximum 
value is 25 (y-coordinate of vertex) at x 5 23.

The technique of completing the square can be used to derive the quadratic 
formula. The following example derives a general expression for the axis  
of symmetry and vertex of a quadratic function in the general form  
f (x) 5 ax 2 1 bx 1 c  by completing the square.

Example 5 – Graphical properties of general quadratic functions 

Find the axis of symmetry and the vertex for the general quadratic 
function f (x) 5 ax 2 1 bx 1 c.

Solution

f (x) 5 a  ( x 2 1   b __ a   x 1   c __ a   )  Factorize so that the coefficient

  of the x 2 term is 11.

f (x) 5 a  [ x 2 1   b __ a   x 1  (   b ___ 
2a

   ) 2 2  (   b ___ 
2a

   ) 2 1   c __ a   ]  p 5   b __ a   ⇒  (   p __ 2   ) 
2
 5  (   b ___ 2a

   ) 
2

f (x) 5 a  [  ( x 1   b ___ 
2a

   ) 2 2   b 2 ___ 
4a2   1   c __ a   ]  x2 1   b __ a   x 1  (   b ___ 2a

   ) 
2
 5 x 1  (   b ___ 2a

   )  
2

f (x) 5 a  ( x 1   b ___ 
2a

   ) 
2
 2   b 2 ___ 4a   1 c Multiply through by a. 

f (x) 5 a  ( x 2 ( 2   b ___ 
2a

   )  ) 
2
 1 c 2   b 2 ___ 4a   Express in vertex form:

  f (x) 5 a(x 2 h)2 1 k

This result leads to the following generalization.

Symmetry and vertex of f (x) 5 ax 2 1 bx 1 c
For the graph of the quadratic function f (x) 5 ax 2 1 bx 1 c, the axis of symmetry is the 

vertical line with the equation x 5 2   b ___ 2a
   and the vertex has coordinates  ( 2   b ___ 2a

  , c 2   b 2 ___ 4a   ) .

Check the results for Example 4 using the formulae for the axis of 
symmetry and vertex. For the function g  :  x ↦ 22x 2 2 12x 1 7:

x 5 2   b ___ 
2a

   5 2   212 ______ 
2(22)

   5 23 ⇒ axis of symmetry is the vertical line x 5 23

c 2   b 2 ___ 4a   5 7 2   
(212)2

 ______ 
4(22)

   5   56 ___ 
8

   1   144 ___ 
8

   5 25 ⇒ vertex has coordinates (23, 25)

These results agree with the results from Example 4.

Zeros of a quadratic function
A specific value for x is a zero of a quadratic function f (x) 5 ax 2 1 bx 1 c 
if it is a solution (or root) to the equation ax 2 1 bx 1 c 5 0. 
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As we will observe, every quadratic function will have two zeros 
although it is possible for the same zero to occur twice (double zero, 
or double root). The x-coordinate of any point(s) where f crosses the 
x-axis (y-coordinate is zero) is a real zero of the function. A quadratic 
function can have one, two or no real zeros as Figure 3.9 illustrates. To 
find non-real zeros we need to extend our search to the set of complex 
numbers and we will see that a quadratic function with no real zeros 
will have two distinct imaginary zeros. Finding all zeros of a quadratic 
function requires you to solve quadratic equations of the form  
ax 2 1 bx 1 c 5 0. Although a  0, it is possible for b or c to be equal 
to zero. There are five general methods for solving quadratic  
equations as outlined in Table 3.2 below.

x

y

one real
zero

no real
zeros

two real
zeros

Figure 3.9

Square root If a2 5 c and c . 0, then a 5 ​√_
​c   .

Examples x 2 2 25 5 0 (x 1 2)2 5 15
 x 2 5 25 x 1 2 5  √

___
 15  

 x 5 5 x 5 22  √
___

 15  

Factorizing If ab 5 0, then a 5 0 or b 5 0.

Examples x 2 1 3x 2 10 5 0 x 2 2 7x 5 0
 (x 1 5)(x 2 2) 5 0 x(x 2 7) 5 0
 x 5 25 or x 5 2 x 5 0 or x 5 7

Completing the  If x 2 1 px 1 q 5 0, then x 2 1 px 1  (   p __ 2   ) 
2
 5 2q 1  (   p __ 2   ) 

2
 which leads to  ( x 1   

p
 __ 2   ) 

2
 5 2q 1   

p2

 __ 4    
square

 and then the square root of both sides (as above).

Example x 2 2 8x 1 5 5 0
 x 2 2 8x 1 16 5 25 1 16
 (x 2 4)2 5 11
 x 2 4 5  √

___
 11  

 x 5 4   √
___

 11  

Quadratic formula If ax 2 1 bx 1 c 5 0, then x 5   2b   √
________

 b2 2 4ac    ______________ 2a
   .

Example 2x 2 2 3x 2 4 5 0

 x 5   
2(23)   √

______________

  (23)2 2 4(2)(24)  
   ________________________  

2(2)
  

 x 5   3   √
___

 41   _______ 4  

Graphing Graph the equation y 5 ax 2 1 bx 1 c on your GDC. Use the calculating features of your GDC to 
determine the x-coordinates of the point(s) where the parabola intersects the x-axis.
Note: This method works for finding real solutions, but not imaginary solutions.

Example 2x 2 2 5x 2 7 5 0 GDC calculations reveal that the zeros are at x 5   7 _ 2   and x 5 21

Table 3.2  Methods for solving quadratic equations.

Plot1 Plot2
1:value

Y1=2x2-5x-7

Left Bound?
X=2.787234 Y=-5.398823

Left Bound? Right Bound?
X=-1.297872 X=-.6170213 Y=-3.153463

Y1=2x2-5x-7 Y1=2x2-5x-7 Y1=2x2-5x-7

Y=2.8583069

Right Bound? Guess?
X=3.8085106 X=3.6382979

Zero
X=-1 Y=0

Zero
X=3.5 Y=0

Y=1.2829335

Guess?
X=-.8723404 Y=-1.116342

Y1=2x2-5x-7

Y=2.9669535

3:minimum
4:maximum
5:intersect
6:dy dx
7:�f(x)dx

Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Y1=2X2–5X–7
CALCULATE

2:zero

Y1=2x2-5x-7
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Sum and product of the roots of a quadratic 
equation

Consider the quadratic equation x 2 1 5x 2 24 5 0. This equation can be 
solved using factorization as follows.

x 2 1 5x 2 24 5 (x 1 8)(x 2 3) 5 0 ⇒ x 5 28 or x 5 3

Clearly, if x 2 a is a factor of the quadratic polynomial ax 2 1 bx 1 c, then 
x 5 a is a root (solution) of the quadratic equation ax 2 1 bx 1 c 5 0.

Now let us consider the general quadratic equation ax 2 1 bx 1 c 5 0, 
whose roots are x 5 a and x 5 b. Given our observation from the previous 
paragraph, we can write the quadratic equation with roots a and b as:

 ax 2 1 bx 1 c 5 (x 2 a)(x 2 b)  5  0
 x 2 2 ax 2 bx 1 ab  5 0
 x 2 2 (a 1 b)x 1 ab  5 0

Since the equation ax 2 1 bx 1 c 5 0 can also be written as x 2 1 ​​b _​a ​x 1 ​​c _​a ​ 5 0, 
then: 

x 2 2 (a 1 b)x 1 ab 5 x 2 1 ​​b _​a ​x 1 ​​c _​a ​ 

Equating coefficients of both sides, gives the following results.

a 1 b 5 2​​b _​
a

 ​ and ab 5 ​​c _​a ​

Sum and product of the roots of a quadratic equation
For any quadratic equation in the form ax 2 1 bx 1 c 5 0, the sum of the roots of the 

equation is 2  b __ 
a

   and the product of the roots is   c __ a  . (In the next section, this result is 

extended to polynomial equations of any degree.)

Example 6 

If a and b are the roots of each equation, find the sum, a 1 b, and 
product, ab, of the roots.

a) x 2 2 5x 1 3 5 0 b) 3x 2 1 4x 2 7 5 0

Solution

a) For the equation x 2 2 5x 1 3 5 0, a 5 1, b 5 25 and c 5 3. 

 Therefore, a 1 b 5 2  b __ 
a

   5 2  25 ___ 
1

   5 5 and ab 5   c __ a   5   3 __ 
1

   5 3.

b) For the equation 3x 2 1 4x 2 7 5 0, a 5 3, b 5 4 and c 5 27. 

 Therefore, a 1 b 5 2  b __ 
a

   5 2  4 __ 
3

   and ab 5   c __ a   5   27 ___ 
3

  .

Example 7 

If a and b are the roots of the equation 2x 2 1 6x 2 5 5 0, find a quadratic 
equation whose roots are:

a) 2a, 2b b)   1 _____ 
a 1 1

  ,   1 _____ 
b 1 1

  

In the next section, the Factor 
Theorem formally states the 
relationship between linear 
factors of the form x – a and 
the zeros for any polynomial.

If the sum and product of the 
roots of a quadratic equation 
are known, then the equation 
can be written in the following 
form: x 2 2 (sum of roots)x 1 
(product of roots) 5 0
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Solution

For the equation 2x 2 1 6x 2 5 5 0, a 5 2, b 5 6 and c 5 25.

Thus, a 1 b 5 2​​b _​
a

 ​ 5 2​​6 _​
2

 ​ 5 23 and ab 5 ​​c _​a ​ 5 ​​25 ___​
2 ​.

a) Sum of the new roots 52a 1 2b 5 2(a 1 b) 5 2(23) 5 26.

 Thus for the new equation, 2  b __ 
a

   5 26.

 Product of the new roots 5 2a ⋅ 2b 5 4ab 5 4 ( 2  5 __ 
2

   )  5 210.

 Thus for the new equation,   c __ a   5 210.

 The new equation we are looking for can be written as ax 2 1 bx 1 c 5 0 or 

 x 2 1   b __ a  x 1   c __ a   5 0.

 Therefore, the quadratic equation with roots 2a, 2b is x 2 2(26)x 2 10 5 0 
⇒ x 2 1 6x 2 10 5 0

b) Sum of the new roots   1 _____ 
a 1 1

   1   1 _____ 
b 1 1

   5   
b 1 1 1 a 1 1

  _____________  
(a 1 1)(b 1 1)

   

 5   
a 1 b 1 2

  ______________  
ab 1 a 1 b 1 1

   5   23 1 2 __________ 
2  5 __ 

2
   2 3 1 1

   5   21 ___ 
2  9 __ 

2
  
   5   2 __ 

9
  .

 Thus for the new equation, 2  b __ 
a

   5   2 __ 
9

  .

 Product of the new roots  (   1 _____ 
a 1 1

   )  (   1 _____ 
b 1 1

   )  5   1 ______________  
ab 1 a 1 b 1 1

   

 5   1 __________ 
2  5 __ 

2
   2 3 1 1

   5   1 ___ 
2  9 __ 

2
  
   5 2  2 __ 

9
  .

 Thus for the new equation,   c __ a   5 2  2 __ 
9

  .

 The new equation we are looking for can be written as x 2 1   b __ a  x 1   c __ a   5 0.

 Therefore, the quadratic equation with roots

   1 _____ 
a 1 1

  ,   1 _____ 
b 1 1

   is x 2 2   2 __ 
9

  x 2   2 __ 
9

   5 0 or 9x 2 2 2x 2 2 5 0.

Example 8 

Given that the roots of the equation x 2 2 4x 1 2 5 0 are a and b, find the 
values of the following expressions.

a) a2 1 b2 b)   1 __ 
a2   1   1 __ 

b2  

Solution

With x 2 2 4x 1 2 5 0, a 1 b 5 2 ​​b _​a ​ 5 2 ​​24 ___​
1 ​ 5 4 and ab 5 ​​c _​a ​ 5 ​​2 _​1 ​ 5 2.

Both of the expressions a2 1 b2 and ​​1 __​
a2 ​ 1 ​​1 __​

b2 ​ need to be expressed in terms 
of a 1 b and ab.

a) a2 1 b2 5 a2 1 2ab 1 b2 2 2ab 5 (a 1 b)2 2 2ab

 Substituting the values for a 1 b and ab from above, gives 
a2 1 b2 5 42 2 2 ⋅ 2 5 16 2 4 5 12.

b)   1 __ 
a2   1   1 __ 

b2   5   
b2

 ____ 
a2b2   1   a2

 ____ 
a2b2   5   

a2 1 b2

 _______ 
(ab)2  
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 From part a) we know that a2 1 b2 5 (a 1 b)2 2 2ab. Substituting 
this into the numerator gives:

   1 __ 
a2   1   1 __ 

b2   5   
(a 1 b)2 2 2ab

  ______________ 
(ab)2   Then substituting the values for a 1 b and

 ab from above, gives:

 5   4
2 2 2 ⋅ 2 ________ 

22   5   12 ___ 4   5 3

 Therefore,   1 __ 
a2   1   1 __ 

b2   5 3.

The quadratic formula and the discriminant
The expression that is beneath the radical sign in the quadratic formula, 
b 2 2 4ac, determines whether the zeros of a quadratic function are real or 
imaginary. Because it acts to ‘discriminate’ between the types of zeros,  
b 2 2 4ac is called the discriminant. It is often labelled with the Greek letter 
D (delta). The value of the discrimant can also indicate if the zeros are 
equal and if they are rational.

The discriminant and the nature of the zeros of a quadratic function
For the quadratic function f (x) 5 ax 2 1 bx 1 c, (a  0) where a,­b and c are real numbers:

If D 5 b2 2 4ac . 0, then f has two distinct real zeros, and the graph of f intersects the 
x-axis twice.

If D 5 b2 2 4ac 5 0, then f has one real zero (double root), and the graph of f intersects 
the x-axis once (i.e. it is tangent to the x-axis).

If D 5 b2 2 4ac , 0, then f has two conjugate imaginary zeros, and the graph of f does 
not intersect the x-axis.

In the special case when a, b and c are integers and the discriminant is the square of an 
integer (a perfect square), the polynomial ax2 1 bx 1 c has two distinct rational zeros.

Factorable quadratics
If the zeros of a quadratic polynomial are rational – either two distinct zeros or two equal 
zeros (double zero/root) – then the polynomial is factorable. That is, if ax 2 1 bx 1 c has 
rational zeros then ax 2 1 bx 1 c 5 (mx 1 n)(px 1 q) where m, n, p and q are rational 
numbers.

Example 9 – Using discriminant to determine the nature of the roots 
of a quadratic equation 

Use the discriminant to determine how many real roots each equation 
has. Visually confirm the result by graphing the corresponding quadratic 
function for each equation on your GDC.

a) 2x 2 1 5x 2 3 5 0 b) 4x 2 2 12x 1 9 5 0 c) 2x 2 2 5x 1 6 5 0

When the discriminant is zero then the solution of a quadratic function is 

x 5   2b   √
________

 b2 2 4ac    ______________ 2a
   5   2b   √

__
 0   ________ 2a

   5 2   b ___ 2a
  . As mentioned, this solution of  2   b ___ 2a

   

is called a double zero (or root) which can also be described as a zero of 

multiplicity of 2. If a and b are integers then the zero  2   b ___ 2a
   will be rational. 

When we solve polynomial functions of higher degree later this chapter, we will 
encounter zeros of higher multiplicity.

 Hint: Remember that the roots 
of a polynomial equation are those 
values of x for which P(x) 5 0. These 
values of x are called the zeros of 
the polynomial P.
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Solution 

a) The discriminant is D 5 52 2 4(2)(23) 5 49 . 0. Therefore, the 
equation has two distinct real roots. This result is confirmed by the 
graph of the quadratic function y 5 2x 2 1 5x 2 3 that clearly shows it 
intersecting the x-axis twice. Also since D 5 49 is a perfect square then 
the two roots are also rational and the quadratic polynomial  
2x 2 1 5x 2 3 5 0 is factorable : 2x 2 1 5x 2 3 5 (2x 2 1)(x 1 3) 5 0. 
Thus, the two rational roots are x 5   1 _ 2   and x 5 23.

b) The discriminant is D 5 (212)2 2 4(4)(9) 5 0. Therefore, the equation 
has one rational root (a double root). The graph on the GDC of  
y 5 4x 2 2 12x 1 9 appears to intersect the x-axis at only one point. We 
can be more confident with this conclusion by investigating further – 
for example, tracing or looking at a table of values on the GDC.

y � 4x2 � 12x � 9

 Also, since the root is rational (D 5 0), the polynomial 4x 2 2 12x 1 9 
 must be factorable. 

4x 2 2 12x 1 9 5 (2x 2 3)(2x 2 3) 5  [ 2 ( x 2   3 _ 2   ) 2 ( x 2   3 _ 2   )  ]  5  4 ( x 2   3 _ 2   )  
2
  5 0

 There are two equal linear factors which means there are two equal 
rational zeros – both equal to   3 _ 2   in this case.

c) The discriminant is D 5 (25)2 2 4(2)(6) 5 223 , 0. Therefore, the 
equation has no real roots. This result is confirmed by the graph of the 
quadratic function y 5 2x 2 2 5x 1 6 that clearly shows that the graph 
does not intersect the x-axis. The equation will have two imaginary roots.

y � 2x2 � 5x � 6

Example 10 – The discriminant and number of real zeros 

For 4x 2 1 4kx 1 9 5 0, determine the value(s) of k so that the equation 
has: a) one real zero, b) two distinct real zeros, and c) no real zeros.

Solution

a) For one real zero D 5 (4k)2 2 4(4)(9) 5 0 ⇒ 16k 2 2 144 5 0 
 ⇒ 16k 2 5 144 ⇒ k 2 5 9 ⇒ k 5 3

 Hint: If a quadratic polynomial 
has a zero of multiplicity 2 (D 5 0), 
as in Example 6 b), then not only is 
the polynomial factorable but its 
factorization will contain two equal 
linear factors. In such a case then 
ax 2 1 bx 1 c 5 a(x 2 p)2 where 
x 2 p is the linear factor and x 5 p 
is the rational zero.

y � 2x2 � 5x � 3
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b) For two distinct real zeros D 5 (4k)2 2 4(4)(9) . 0 ⇒ 16k 2 . 144 
 ⇒ k 2 . 9 ⇒ k , 23 or k . 3

c) For no real zeros D 5 (4k)2 2 4(4)(9) , 0 ⇒ 16k 2 , 144 ⇒ k 2 , 9
 ⇒ k . 23 and k , 3 ⇒ 23 , k , 3

Example 11 – Conjugate imaginary solutions 

Find the zeros of the function g : x → 2x 2 2 4x 1 7.

Solution

Solve the equation 2x 2 2 4x 1 7 5 0 using the quadratic formula with 
a 5 2, b 5 24, c 5 7.

x 5   
2(24)    √

______________

  (24)2 2 4(2)(7)  
   _______________________  

2(2)
   5   

4    √
____

 240  
 _________ 4   5   

4    √
__

 4    √
___

 21    √
___

 10  
  _____________ 4   

5   
4  2i  √

___
 10  
 _________ 4   5 1    

i   √
___

 10  
 _____ 

2
  

The two zeros of g are 1 1   
  √

___
 10  
 ____ 

2
   i and 1 2   

  √
___

 10  
 ____ 

2
   i.

Note that the imaginary zeros are written in the form a 1 bi (introduced 
in Section 1.1) and that they clearly are a pair of conjugates, i.e. fitting the 
pattern a 1 bi and a 2 bi.

The graph of f (x) 5 a(x 2 p)(x 2 q)
If a quadratic function is written in the form f (x) 5 a(x 2 p)(x 2 q) then 
we can easily identify the x-intercepts of the graph of f. Consider that 
f (p) 5 a(p 2 p)(p 2 q) 5 a(0)(p 2 q) 5 0 and that 
f (q) 5 a(q 2 p)(q 2 q) 5 a(q 2 p)(0) 5 0. Therefore, the quadratic 
function f (x) 5 a(x 2 p)(x 2 q) will intersect the x-axis at the points 
(p, 0) and (q, 0). We need to factorize in order to rewrite a quadratic function 
in the form f (x) 5 ax 2 1 bx 1 c   to the form f (x) 5 a(x 2 p)(x 2 q).
Hence, f (x) 5 a(x 2 p)(x 2 q) can be referred to as the factorized form of a 
quadratic function. Recalling the symmetric nature of a parabola, it is clear 
that the x-intercepts (p, 0) and (q, 0) will be equidistant from the axis of 
symmetry (see Figure 3.10). As a result, the equation of the axis of symmetry 
and the x-coordinate of the vertex of the parabola can be found from finding 
the average of p and q.

Factorized form of a quadratic function
If a quadratic function is written in the form f (x) 5 a(x 2 p)(x 2 q), with a  0, the 
graph of f has x-intercepts at (p, 0) and (q, 0), an axis of symmetry with equation 

x 5   
p 1 q

 _____ 2  , and a vertex at  (    p 1 q
 _____ 2  , f  (    p 1 q

 _____ 2   )  ) .

Number of complex zeros of 
a quadratic polynomial
Every quadratic polynomial 
has exactly two complex 
zeros, provided that a zero of 
multiplicity 2 (two equal zeros) 
is counted as two zeros.

 Hint: Recall from Section 1.1 that 
the real numbers and the imaginary 
numbers are distinct subsets of 
the complex numbers. A complex 
number can be either real 

 ( e.g. 27,   p __ 2  , 3 2   √
__

 2   )  or imaginary 

(e.g. 4i, 2 1 i    √
__

 5  ).

(p, 0)

vertex

(q, 0)

f(x) x �

( , f

axis of symmetry

x

y p � q
2

p � q
2 ( ))p � q

2

0

Figure 3.10
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Example 12 

Find the equation of each quadratic function from the graph in the form  
f (x) 5 a(x 2 p)(x 2 q) and also in the form f (x) 5 ax 2 1 bx 1 c.

a)   b)

   

Solution
a) Since the x-intercepts are 23 and 1 then y 5 a(x 1 3)(x 2 1). 

The y-intercept is 6, so when x 5 0, y 5 6. Hence, 
6 5 a(0 1 3)(0 2 1) 5 23a ⇒ a 5 22 (a , 0 agrees with the fact that 
the parabola is opening down). The function is f (x) 5 22(x 1 3)(x 2 1),
and expanding to remove brackets reveals that the function can also be 
written as f (x) 5 22x 2 2 4x 1 6.

b) The function has one x-intercept at 2 (double root), so p 5 q 5 2 and 
y 5 a(x 2 2)(x 2 2) 5 a(x 2 2)2. The y-intercept is 12, so when 
x 5 0, y 5 12. Hence, 12 5 a(0 2 2)2 5 4a ⇒ a 5 3 (a . 0 agrees 
with the parabola opening up). The function is f (x) 5 3(x 2 2)2. 
Expanding reveals that the function can also be written as  
f (x) 5 3x 2 2 12x 1 12.

Example 13 

The graph of a quadratic function intersects the x-axis at the points (26, 0)
and (22, 0) and also passes through the point (2, 16). a) Write the function 
in the form f (x) 5 a(x 2 p)(x 2 q). b) Find the vertex of the parabola. 
c) Write the function in the form f (x) 5 a(x 2 h)2 1 k.

Solution
a) The x-intercepts of 26 and 22 gives f (x) 5 a(x 1 6)(x 1 2). Since f 

passes through (2, 16), then f (2) 5 16 ⇒ f (2) 5 a(2 1 6)(2 1 2) 5 16
⇒ 32a 5 16 ⇒ a 5   1 _ 2  . Therefore, f (x) 5   1 _ 2  (x 1 6)(x 1 2).

b) The x-coordinate of the vertex is the average of the x-intercepts.

 x 5   26 2 2 _______ 
2

   5 24, so the y-coordinate of the vertex is 

 y 5 f (24) 5   1 _ 2  (24 1 6)(24 1 2) 5 22. Hence, the vertex is (24, 22).

c) In vertex form, the quadratic function is f (x) 5   1 _ 2  (x 1 4)2 2 2.

x

y

6

1�3 0

x

y

12

20
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Quadratic function, a  0 Graph of function Results

General form

f  (x) 5 ax 2 1 bx 1 c

D 5 b2 2 4ac (discriminant)

Parabola opens up if a . 0
Parabola opens down if a , 0

x � �

(                        )� c �

b
2a

,

�b �   �
2a

�b �   �
2a

b
2a

b2

4a

If D > 0, f has x-intercept(s)
If D , 0, f has no x-intercept(s)

Axis of symmetry is x 5 2   b ___ 2a
  

If D > 0, f has x-intercept(s):

  (   2b    √
__

 D  
 _________ 2a

  , 0 ) 

Vertex is:  ( 2   b ___ 2a
  , c 2   b

2
 ___ 4a   ) 

Vertex form

f  (x) 5 a(x 2 h)2 1 k

x � h

(h, k)

Axis of symmetry is x 5 h

Vertex is (h, k)

Factorized form 
(two distinct rational zeros)

f  (x) 5 a(x 2 p)(x 2 q)

f

(p, 0)(q, 0)

x �

(                        ))),

p � q
2

p � q
2

p � q
2

Axis of symmetry is x 5   
p 1 q

 _____ 2  

x-intercepts are: (p, 0) and (q, 0)

Factorized form 
(one rational zero)

f  (x) 5 a(x 2 p)2

(p, 0)

x � p Axis of symmetry is x 5 p

Vertex and x-intercept is (p, 0)

Exercise 3.2

For each of the quadratic functions f in questions 1–5, find the following:

a) the axis of symmetry and the vertex, by algebraic methods

b) the transformation(s) that can be applied to y 5 x 2 to obtain the graph of y 5 f (x)

c) the minimum or maximum value of f.

Check your results using your GDC.

 1 f  :  x ↦ x 2 2 10x 1 32  2 f  :  x ↦ x 2 1 6x 1 8

 3 f  :  x ↦ 22x 2 2 4x 1 10  4 f  :  x ↦ 4x 2 2 4x 1 9

 5 f  :  x ↦   1 _ 2  x 2 1 7x 1 26

Table 3.3 Review of properties of 
quadratics. 
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In questions 6–13, solve the quadratic equation using factorization.

 6 x 2 1 2x 2 8 5 0 7 x 2 5 3x 1 10

 8 6x 2 2 9x 5 0 9 6 1 5x 5 x 2

10 x 2 1 9 5 6x 11 3x 2 1 11x 2 4 5 0

12 3x 2 1 18 5 15x 13 9x 2 2 5 4x 2

In questions 14–19, use the method of completing the square to solve the quadratic 
equation.

14 x 2 1 4x 2 3 5 0 15 x 2 2 4x 2 5 5 0

16 x 2 2 2x 1 3 5 0 17 2x 2 1 16x 1 6 5 0

18 x 2 1 2x 2 8 5 0 19 22x 2 1 4x 1 9 5 0

20 Let f (x) 5 x 2 2 4x 2 1. a) Use the quadratic formula to find the zeros of the 
function. b) Use the zeros to find the equation for the axis of symmetry of the 
parabola. c) Find the minimum or maximum value of f.

In questions 21–24, determine the number of real solutions to each equation.

21 x 2 1 3x 1 2 5 0 

22 2x 2 2 3x 1 2 5 0

23 x 2 2 1 5 0 

24 2x 2 2   9 _ 4  x 1 1 5 0

25 Find the value(s) of p for which the equation 2x 2 1 px 1 1 5 0 has one real 
solution.

26 Find the value(s) of k for which the equation x 2 1 4x 1 k 5 0 has two distinct 
real solutions.

27 The equation x 2 2 4kx 1 4 5 0 has two distinct real solutions. Find the set of all 
possible values of k.

28 Find all possible values of m so that the graph of the function 
g  :  x ↦ mx 2 1 6x 1 m does not touch the x-axis.

29 Find the range of values of k such that 3x 2 2 12x 1 k . 0 for all real values of x. 
(Hint: Consider what must be true about the zeros of the quadratic equation  
y 5 3x 2 2 12x 1 k.)

30 Prove that the expression x 2 2 2 x 2 is negative for all real values of x.

In questions 31 and 32, find a quadratic function in the form y 5 ax 2 1 bx 1 c that 
satisfies the given conditions.

31 The function has zeros of x 5 21 and x 5 4 and its graph intersects the y-axis at 
(0, 8).

32 The function has zeros of x 5   1 _ 2   and x 5 3 and its graph passes through the 
point (21, 4).

33 Find the range of values for k in order for the equation 2x 2 1 (3 2 k)x 1 k 1 3 5 0 
to have two imaginary solutions.

34 For what values of m does the function f (x) 5 5x 2 2 mx 1 2 have two distinct 
real zeros?
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 3.3 Zeros, factors and remainders

Finding the zeros of polynomial functions is a feature of many problems 
in algebra, calculus and other areas of mathematics. In our analysis 
of quadratic functions in the previous section, we saw the connection 
between the graphical and algebraic approaches to finding zeros. 
Information obtained from the graph of a function can be used to help 
find its zeros and, conversely, information about the zeros of a polynomial 

35 The graph of a quadratic function passes through the points (23, 10), (   1 _ 4  , 2   9 __ 16  )

 and (1, 6). Express the function in the form f (x) 5 ax 2 1 bx 1 c, where a, b, c  R.

36 The maximum value of the function f (x) 5 ax 2 1 bx 1 c is 10. 
Given that f (3) 5 f (21) 5 2, find f (2).

37 Find the values of x for which 4x 1 1 , x 2 1 4.

38 Show that there is no real value t for which the equation 2x 2 1 (2 2 t)x 1 t 2 1 3 5 0 
has real roots.

39 Show that the two roots of ax 2 2 a2x 2 x 1 a 5 0 are reciprocals of each other.

40 Find the sum and product of the roots for each of the following quadratic 
equations.

 a) 2x 2 1 6x 2 5 5 0 b) x 2 5 1 2 3x c) 4x 2 2 6 5 0

 d) x 2 1 ax 2 2a 5 0 e) m(m 2 2) 5 4(m 1 1) f ) 3x 2   2 __ x   5 1

41 The roots of the equation 2x 2 2 3x 1 6 5 0 are a and b. Find a quadratic 

 equation with integral coefficients whose roots are   a __ 
b

   and   
b

 __ a  .

42 If a and b are the roots of the equation 3x 2 1 5x 1 4 5 0, find the values of the 
following expressions.

 a) a2 1 b2 b)   a __ 
b

   1   
b

 __ a  

 c) a3 1 b3        [Hint: factorise a3 1 b3 into a product of a binomial and a 
trinomial.]

43 Consider the quadratic equation x 2 1 8x 1 k 5 0 where k is a constant.

 a)  Find both roots of the equation given that one root of the equation is three 
times the other.

 b)  Find the value of k.

44 The roots of the equation x 2 1 x 1 4 5 0 are a and b.

 a) Without solving the equation, find the value of the expression   1 __ a   1   1 __ 
b

  .

 b) Find a quadratic equation whose roots are   1 __ a   and   1 __ 
b

  .

45 If a and b are roots of the quadratic equation 5x 2 2 3x 2 1 5 0, find a quadratic 
equation with integral coefficients which have the roots: 

 a)   1 __ 
a2   and   1 __ 

b2   b)   a
2
 __ 

b
   and   

b2

 __ a  
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function can be used to help sketch its graph. Results and observations 
from the last section lead us to make some statements about real zeros 
of all polynomial functions. Later in this section we will extend our 
consideration to imaginary zeros. The following box summarizes what we 
have observed thus far about the zeros of polynomial functions.

Real zeros of polynomial functions
If P is a polynomial function and c is a real number, then the following statements are 
equivalent.
• x 5 c is a zero of the function P.
• x 5 c is a solution (or root) of the polynomial equation P(x) 5 0.
• x 2 c is a linear factor of the polynomial P.
• (c, 0) is an x-intercept of the graph of the function P.

Polynomial division
As with integers, finding the factors of polynomials is closely related to 
dividing polynomials. An integer n is divisible by another integer m if m 
is a factor of n. If n is not divisible by m we can use the process of long 
division to find the quotient of the numbers and the remainder. For 
example, let’s use long division to divide 485 by 34.

14
34 ) 

____

 485  
34
145
136

9

  14 quotient
 3 34 divisor
 56
 420
 476
 1 9 remainder
 485 dividend

check:

The number 485 is the dividend, 34 is the divisor, 14 is the quotient and 
9 is the remainder. The long division process (or algorithm) stops when a 
remainder is less than the divisor. The procedure shown above for checking 
the division result may be expressed as

485 5 34 3 14 1 9

or in words as 

 dividend 5 divisor 3 quotient 1 remainder

The process of division for polynomials is similar to that for integers. If 
a polynomial D(x) is a factor of polynomial P(x), then P(x) is divisible 
by D(x). However, if D(x) is not a factor of P(x) then we can use a long 
division algorithm for polynomials to find a quotient polynomial Q(x) 
and a remainder polynomial R(x) such that P(x) 5 D(x)  Q(x) 1 R(x). 
In the same way that the remainder must be less than the divisor when 
dividing integers, the remainder must be a polynomial of a lower degree 
than the divisor when dividing polynomials. Consequently, when the 
divisor is a linear polynomial (degree of 1) the remainder must be of 
degree 0, i.e. a constant.
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Example 14 

Find the quotient Q(x) and remainder R(x) when P(x) 5 2x 3 2 5x 2 1 6x 2 3 
is divided by D(x) 5 x 2 2.

Solution

 2x  2 2 x 1 4
x 2 2 ) 

_________________

  2x  3 2 5x  2 1 6x 2 3  
 2x  3 2 4x  2  ← 2x  2(x 2 2)
 2 x  2 1 6x ← Subtract
 2 x  2 1 2x ← 2x(x 2 2)
  4x 2 3 ←Subtract
  4x 2 8 ← 4(x 2 2)
  5 ← Subtract

Thus, the quotient Q(x) is 2x  2 2 x 1 4 and the remainder is 5. Therefore, 
we can write 

 2x  3 2 5x  2 1 6x 2 3 5 (x 2 2)(2x  2 2 x 1 4) 1 5

This equation provides a means to check the result by expanding and 
simplifying the right side and verifying it is equal to the left side.

2x  3 2 5x  2 1 6x 2 3 5 (x 2 2)(2x  2 2 x 1 4) 1 5

 5 (2x  3 2 x  2 1 4x 2 4x  2 1 2x 2 8) 1 5

 5 2x  3 2 5x  2 1 6x 2 3

Taking the identity P(x) 5 D(x)  Q(x) 1 R(x) and dividing both sides by 

D(x) produces the equivalent identity   
P(x)

 ____ 
D(x)

   5 Q(x) 1   
R(x)

 ____ 
D(x)

  .

Hence, the result for Example 14 could also be written as 

  2x  3 2 5x  2 1 6x 2 3  _________________ 
x 2 2

   5 2x  2 2 x 1 4 1   5 _____ 
x 2 2

  .

Note that writing the result in this manner is the same as rewriting 

17 5 5 3 3 1 2 as   17
 __ 5   5 3 1   2 _ 5  , which we commonly write as the ‘mixed 

number’ 3  2 _ 5  .

Example 15 

Divide f  (x) 5 4x  3 2 31x 2 15 by 2x 1 5, and use the result to factor f  (x) 
completely.

Solution

 2x  2 2 5x 2 3
2x 1 5 ) 

____________________

  4x  3 1  0x  2 2 31x 2 15  
 4x  3 1 10x  2

 2 10x  2 2 31x
 2 10x  2 2 25x
  26x 2 15
  26x 2 15
  0

 Hint: A common error when 
performing long division with 
polynomials is to add rather than 
subtract during each cycle of the 
process.

 Hint: When performing long 
division with polynomials it is 
necessary to write all polynomials 
so that the powers (exponents) of 
the terms are in descending order. 
Example 12 illustrates that if there 
are any ‘missing’ terms then they 
have a coefficient of zero and a zero 
must be included in the appropriate 
location in the division scheme.
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Thus f  (x) 5 4x  3 2 31x 2 15 5 (2x 1 5)(2x  2 2 5x 2 3) 

… and factorizing the quadratic quotient (also a factor of f  (x)), gives

f  (x) 5 4x  3 2 31x 2 15 5 (2x 1 5)(2x  2 2 5x 2 3)

 5 (2x 1 5)(2x   1 1)(x 2 3)

This factorization would lead us to believe that the three zeros of f  (x) are 

x 5 2   5 _ 2  , x 5 2   1 _ 2   and x 5 3. Graphing f  (x) on our GDC and using 

the ‘trace’ feature confirms that all three values are zeros of the cubic 
polynomial.

Y1=4X^3–31X–15 Y1=4X^3–31X–15 Y1=4X^3–31X–15

X=-2.5 Y=0 X=-0.5 X=3Y=0 Y=0

Remainder and factor theorems
As illustrated by Examples 14 and 15, we commonly divide polynomials 
of higher degree by linear polynomials. By doing so we can often uncover 
zeros of polynomials as occurred in Example 15. Let’s look at what happens 
to the division algorithm when the divisor D(x) is a linear polynomial of 
the form x 2 c. Since the degree of the remainder R(x) must be less than 
the degree of the divisor (degree of one in this case) then the remainder 
will be a constant, simply written as R. Then the division algorithm for a 
linear divisor is the identity:

 P(x) 5 (x 2 c)  Q(x) 1 R

If we evaluate the polynomial function P at the number x 5 c, we obtain

 P(c) 5 (c 2 c)  Q(c) 1 R 5 0  Q(c) 1 R 5 R

Thus the remainder R is equal to P(c), the value of the polynomial P at 
x 5 c. Because this is true for any polynomial P and any linear divisor x 2 c, 
we have the following theorem.

The remainder theorem
If a polynomial function P(x) is divided by x 2 c, then the remainder is the value P(c).

Example 16 

What is the remainder when g(x) 5 2x  3 1 5x  2 2 8x 1 3 is divided by x 1 4?

Division algorithm for polynomials
If P(x) and D(x) are polynomials such that D(x)  0, and the degree of D(x) is less than or 
equal to the degree of P(x), then there exist unique polynomials Q(x) and R(x) such that 

P(x) 5 D(x)  Q(x) 1 R(x)

and where R(x) is either zero or of degree less than the degree of D(x). 
dividend divisor quotient remainder
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Solution

The linear polynomial x 1 4 is equivalent to x 2 (24). Applying the 
remainder theorem, the required remainder is equal to the value of g(24).

g(24) 5 2(24)3 1 5(24)2 2 8(24) 1 3 5 2(264) 1 5(16) 1 32 1 3 
  5 2128 1 80 1 35 5 213

Therefore, when the polynomial function g(x) is divided by x 1 4 the 
remainder is 213.

We found the value of g(24) in Example 16 by directly 
substituting 24 into g(x). Alternatively, we could have 
used the efficient method of synthetic substitution that we 
developed in Section 3.1 to evaluate g(24).

We could also have found the remainder by performing 
long division, which is certainly the least efficient method. 
However, there is a very interesting and helpful connection  
between the process of long division with a linear divisor 
and synthetic substitution.

Not only does synthetic substitution find the value of the  
remainder, but the numbers in the bottom row preceding 
the remainder (shown in red in Figure 3.11) are the same 
as the coefficients of the quotient (also in red) found from 
the long division process. Clearly, synthetic substitution 

is the most efficient method for finding the remainder and quotient when 
dividing a polynomial by a linear polynomial in the form x 2 c. When this 
method is used to find a quotient and remainder we refer to it as synthetic 
division.

A consequence of the remainder theorem is the factor theorem, which 
also follows intuitively from our discussion in the previous section about 
the zeros and factors of quadratic functions. It formalizes the relationship 
between zeros and linear factors of all polynomial functions with real 
coefficients.

The factor theorem
A polynomial function P(x) has a factor x 2 c if and only if P(c) 5 0.

To illustrate the efficiency of synthetic division, let’s answer the same 
problem posed in Example 14 (solution reproduced in Figure 3.12) in 
Example 17.

Example 17 

Find the quotient Q(x) and remainder R(x) when P(x) 5 2x  3 2 5x  2 1 6x 2 3 
is divided by D(x) 5 x 2 2.

It is important to understand 
that the factor theorem is a 
biconditional statement of 
the form ‘A if and only if B’. Such 
a statement is true in either 
‘direction’; that is, ‘If A then B’, 
and also ‘If B then A’ – usually 
abbreviated A → B and B → A, 
respectively. 

The numbers in the last row 
of the synthetic substitution 
process give both the 
remainder and the coefficients 
of the quotient when a 
polynomial is divided by a 
linear polynomial in the form 
x 2 c.

 2x  2 2 3x 1 4
x 1 4 ) 

_________________

  2x  3 1 5x  2 2 8x 1 3  
 2x  3 1 8x  2

 2 3x  2 2 8x
 2 3x  2 2 12x
  4x 1  3
  4x 1 16
        213

24 2 5 28 3

28 12 216

2 23 4 213 5 g(24)

Figure 3.11 Connection between 
synthetic substitution and long 
division.
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Solution

Using synthetic division

Since a divisor of degree 1 is dividing a polynomial of degree 3 then the 
quotient must be of degree 2 and, with all polynomials written so that their 
terms are descending in powers (exponents), we know that the numbers 
in the bottom row of the synthetic division scheme are the coefficients 
of a quadratic polynomial. Hence, the quotient is 2x  2 2 x 1 4 and the 
remainder is 5.

When one or more zeros of a given polynomial are known, applying the 
factor theorem and synthetic division is a very effective strategy to aid in 
finding factors and zeros of the polynomial.

Example 18 

Given that x 5 2   1 _ 2   and x 5 8 are zeros of the polynomial function 
h(x) 5 x  4 2   15

 __ 2  x  3 2 30x 2 16, find the other two zeros of h(x).

Solution

From the factor theorem, it follows that x 1    1 _ 2   and x 2 8 are factors of h(x). 
Dividing the 4th degree polynomial by the two linear factors in succession 
will yield a quadratic factor. We can find the zeros of this quadratic factor by 
using known factorizing techniques or by applying the quadratic formula.

2   1 _ 2  

8

1 2   15
 __ 2  0 230 216

2   1 _ 2  4 22 16

1 28 4 232 0

8 0 32

1 0 4 0

This row shows that x  4 2   15
 __ 2  x  3 2 30x 2 16 

5 (x 1   1 _ 2  )(x  3 2 8x   2 1 4x 2 32).

 
This row shows that x   3 2 8x   2 1 4x  2 32 
5 (x  2 8)(x   2 1 4).

 Hint: Example 18 indicates that if 
we divide the quartic polynomial  
x­­4 2   15

 __ 2  x­­3 2 30x 2 16 by x­­2 1 4 the 
remainder will be zero, since  
x­­2 1 4 is a factor. Synthetic division 
only works for linear divisors of the 
form x 2 c so this division could 
only be done by using the long 
division process.

2 2 25 6 23

4 22 8

2 21 4 5 remainder

coefficients of  
the quotient

    

 2x  2 2 x 1 4

x 2 2 ) 
________________

  2x  3 2 5x  2 1 6x 2 3  
 2x  3 2 4x  2  ← 2x  2(x 2 2)

 2 x  2 1 6x ← Subtract

 2 x  2 1 2x ← 2x(x 2 2)

  4x 2 3 ← Subtract

  4x 2 8 ← 4(x 2 2)

  5 ← Subtract

The quotient Q(x) is 2x  2 2 x 1 4 and the 

remainder is 5.

Figure 3.12 Solution for 
Example 14. 
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Hence, x  4 2   15
 __ 2  x  3 2 30x 2 16 5 (x 1   1 _ 2  )(x 2 8)(x  2 1 4).

The zeros of the quadratic factor x  2 1 4 must also be zeros of h(x).

x  2 1 4 5 0 ⇒ x  2 5 24 ⇒ x 5    √
___

 24   ⇒ x 5    √
__

 4     √
___

 21   ⇒ x 5 2i

Therefore, the other two remaining zeros of h(x) are x 5 2i and x 5 22i.

Note that the two imaginary zeros, x 5 2i and x 5 22i, of the polynomial 
in Example 18 are a pair of conjugates. In the previous section we asserted 
that imaginary zeros of a quadratic polynomial always come in conjugate 
pairs. Although it is beyond the scope of this book to prove it, we will 
accept that this is true for imaginary zeros of any polynomial.

Conjugate zeros
If a polynomial P has real coefficients, and if the complex number z 5 a 1 bi is a zero of 
P, then its conjugate z* 5 a 2 bi is also a zero of P.

Example 19 

Given that 2 2 3i is a zero of the polynomial 5x  3 2 19x  2 1 61x 1 13, find 
all remaining zeros of the polynomial.

Solution

Firstly, we need to consider what is the maximum number of zeros that 
the cubic polynomial can have. In the previous section we stated that every 
quadratic polynomial has exactly two complex zeros. It is reasonable to 
conjecture that a cubic will have three complex zeros. Since 2 2 3i is a zero, 
then 2 1 3i must also be a zero; and the third zero must be a real number. 
Although not explicitly stated in the remainder and factor theorems, 
both theorems are true for linear polynomials x 2 c where the number 
c is real or imaginary, i.e. it can be any complex number. Therefore, the 
cubic polynomial has factors x 2 (2 2 3i) and x 2 (2 1 3i). Rather than 
attempting to divide the cubic polynomial by one of these factors, let’s find 
the product of these factors and use it as a divisor.

[x 2 (2 2 3i)][x 2 (2 1 3i)] 5 [x 2 2 1 3i][x 2 2 2 3i]

 5 [(x 2 2) 1 3i][(x 2 2) 2 3i]

 5 (x 2 2)2  2 (3i)2

 5 x  2 2 4x 1 4 2 9i2

 5 x  2 2 4x 1 4 1 9

 5 x  2 2 4x 1 13

We can only use synthetic division with linear divisors, so we will need to 
divide 5x  3 2 19x  2 1 61x 1 13 by x  2 2 4x 1 13 using long division.
 5x 1 1
x  2 2 4x 1 13 ) 

____________________

  5x  3 2 19x  2 1 61x 1 13  
 5x  3 2 20x  2 1 65x
 x  2 2 4x 1 13
 x  2 2 4x 1 13
 0
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Thus, 5x  3 2 19x  2 1 61x 1 13 also has a linear factor of 5x 1 1 and 
therefore has a zero of x 5 2   1 _ 5  .

The zeros of the cubic polynomial are:

x 5 2 2 3i, x 5 2 1 3i and x 5 2   1 _ 5  .

The cubic polynomial in Example 19 had three complex zeros – one 
real and two imaginary. The quartic polynomial in Example 18 had four 
complex zeros – two real and two imaginary. In Example 15, we factored 
a cubic polynomial into a product of three linear polynomials, so the 
factor theorem says it will have three real zeros. And in the previous 
section we concluded that, provided we take into account the multiplicity 
of a zero (e.g. double root), all quadratic polynomials have two complex 
zeros – either two real zeros or two imaginary zeros. These examples are 
illustrations of the following useful fact.

Zeros of polynomials of degree n
A polynomial of degree n . 0 with complex coefficients has exactly n complex zeros, 
provided that each zero is counted as many times as its multiplicity.

Example 20 

Given that 2x 1 1 is a factor of the cubic function f  (x) 5 2x  3 2 15x  2 1 24x 1 16 

a) completely factorize the polynomial

b) find all of the zeros and their multiplicities

c) sketch its graph for the interval 21 < x < 6, given that the graph of the 
function has a turning point at x 5 1

Solution

a) Remember that synthetic division can only be used for linear divisors 
of the form x 2 c. Because 2x 1 1 5 2 ( x 1   1 _ 2   ) , then if 2x 1 1 is a factor 
x 1   1 _ 2   is also a factor. So we can set up synthetic division with a divisor 
of x 1   1 _ 2  , but we must take the following into account.

2x  3 2 15x  2 1 24x 1 16 5 (2x 1 1)  Q(x)

 5 2(x +   1 _ 2  )  Q(x)

 5  ( x 1   1 _ 2   )   2Q(x)

  2x  3 2 15x  2 1 24x 1 16  ___________________  
x 1   1 _ 2  

   5 2Q(x)

Since imaginary zeros always exist in conjugate pairs then if a polynomial with real 
coefficients has any imaginary zeros there can only be an even number of them. It 
logically follows then that a polynomial with an odd degree has at least one real zero. 
One consequence of this fact is that the graph of an odd-degree polynomial function 
must intersect the x-axis at least once. This agrees with our claim in Section 3.1 that 
the end behaviour of a polynomial function is influenced by its degree. Odd-degree 
polynomial functions will rise as x →  and fall as x → 2 (or the other way around 
if the leading coefficient is negative) producing the same general  shape as y 5 x  3, 
and hence will cross the x-axis at least once.

 Hint: Although for this 
course we restrict our study to 
polynomials with real coefficients, 
it is worthwhile to note that the 
statement about the number 
of complex zeros that exist for a 
polynomial of degree n also holds 
true for a polynomial with imaginary 
coefficients. For example, the 2nd 
degree polynomial 2ix 2 1 4 has 
zeros of 1 1 i and 21 2 i (verify 
this). Note that these two imaginary 
zeros are not conjugates. Only if a 
polynomial’s coefficients are real 
must its imaginary zeros occur in 
conjugate pairs.
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 When the polynomial is divided by x 1   1 _ 2  , the quotient will be two 
times the quotient from dividing by 2x 1 1. Dividing by two will give 
us the quotient that we want.

 
2   1 _ 2  2 215 24 16

21 8 216

2 216 32 0

  

 Hence, 2x  3 2 15x  2 1 24x 1 16 5  ( x 1   1 _ 2   ) (2x  2 2 16x 1 32)

 and 2x  3 2 15x  2 1 24x 1 16 5 2 ( x 1   1 _ 2   )   1 _ 2  (2x  2 2 16x 1 32)
  5 (2x 1 1)(x  2 2 8x 1 16) Factorize the quadratic factor.

  5 (2x 1 1)(x 2 4)(x 2 4)  x  2 2 8x 1 16 fits the pattern 
x  2 1 2ax 1 a  2 5 (x 1 a)2

  5 (2x 1 1)(x 2 4)2

b) The zeros of 2x  3 2 15x  2 1 24x 1 16 are x 2   1 _ 2   and x 5 4 (multiplicity 
of two).

c) Because the polynomial is of degree 3 and its leading coefficient is 
positive, the end behaviour of the graph will be such that the graph 
rises as x →  and falls as x → 2. That means the general shape of 
the graph will be a  shape with one maximum and one minimum as 
shown right.

 Find the coordinates of the given turning point by evaluating f  (1) using 
synthetic substitution.

 Since f  (0) 5 16 then the y-intercept is (0, 16), which means that (1, 27) is a 
maximum point. Because the zero x 5 4 has a multiplicity of two, then we 
know from the previous chapter on quadratic functions that the graph will 
be tangent to the x-axis at the point (4, 0). The other x-intercept is  ( 2   1 _ 2  , 0 ) . 
We can now make a very accurate sketch of the function.
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1 2 215 24 16

2 213 11

2 213 11 27 ⇒ f (1) = 27. Hence, the point (1, 27) 
is on the graph.
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Example 21 

Find a polynomial P with integer coefficients of least degree having zeros 
of x 5 2, x 5 2   1 _ 3   and x 5 1 2 i.

Solution

Given that 1 2 i is a zero then its conjugate 1 1 i must also be a zero. Thus, 
the required polynomial has four complex zeros, and four corresponding 
factors. The four factors are:

x 2 2, x 1   1 _ 3  , x 2 (1 2 i) and x 2 (1 1 i)

P(x) 5 (x 2 2) ( x 1   1 _ 3   ) [x 2 (1 2 i)][x 2 (1 1 i)]

5  ( x  2 2   5 _ 3  x 2   2 _ 3   ) [(x 2 1) 1 i][(x 2 1) 2 i] Multiplying by 3 does not change the zeros …

5 (3x  2 2 5x 2 2)[(x 2 1)2 2 i  2] … but does guarantee integer coefficients.

 5 (3x  2 2 5x 2 2)(x  2 2 2x 1 1 1 1)

 5 (3x  2 2 5x 2 2)(x  2 2 2x 1 2)

 5 3x  4 2 6x  3 1 6x  2 2 5x  3 1 10x  2 2 10x 2 2x  2 1 4x 2 4

P(x) 5 3x  4 2 11x  3 1 14x  2 2 6x 2 4

There is a theorem called the 
fundamental theorem of 
algebra that guarantees that 
every polynomial function of 
non-zero degree with complex 
coefficients has at least one 
complex zero. The theorem 
was first proved by the famous 
German mathematician Carl 
Friedrich Gauss (1777–1855). 
Many of the results in this section 
on the zeros of polynomials are 
directly connected with this 
important theorem.

We know how to find the exact zeros of linear and quadratic functions. The quadratic 
formula is a general rule that gives the exact values of all complex zeros of any 
quadratic polynomial using radicals and the coefficients of the polynomial. We also 
know how to use our GDC to approximate real zeros. In this chapter, we have gained 
techniques to search for, or verify, the zeros of polynomial functions of degree 3 
or higher. This leads us to an important question: Can we find exact values of all 
complex zeros of any polynomial function of 3rd degree and higher? This question 
was answered for cubic and quartic polynomials in the 16th century when the 
Italian mathematician Girolamo Cardano (1501–1576) presented a ‘cubic formula’ 
and a ‘quartic formula’. These formulae were methods for finding all complex zeros 
of 3rd degree and 4th degree polynomials using only radicals and coefficients. 
Cardano’s presentation of the formulae depended heavily on the work of other Italian 
mathematicians. Scipione del Ferro (1465–1526) is given credit as the first to find 
a general algebraic solution to cubic equations. Cardano’s method of solving any 
cubic was obtained from Niccolo Fontana (1500–1557) known as ‘Tartaglia’. Similarly, 
Cardano solved quartic equations using a method that he learned from his own 
student Lodovico Ferrari (1522–1565). The methods for solving cubic and quartic 
equations are quite complicated and are not part of this course. The question of 
finding formulae for exact zeros of polynomials of degree 5 (quintic) and higher was 
not resolved until the early 19th century. In 1824, a young Norwegian mathematician, 
Niels Henrik Abel (1802–1829), proved that it was impossible to find an algebraic 
formula for a general quintic equation. An even more remarkable discovery was 
made by the French mathematician Evariste Galois (1811–1832) who died in a pistol 
duel before turning 21. Galois proved that for any polynomial of degree 5 or greater, 
it is not possible, except in special cases, to find the exact zeros by using only radicals 
and the polynomial’s coefficients. Mathematicians have developed sophisticated 
methods of approximating the zeros of polynomial equations of high degree and 
other types of equations for which there are no algebraic solution methods. These are 
studied in a branch of advanced mathematics called numerical analysis.
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Sum and product of the roots of any 
polynomial equation
In the previous section, we found a way to express the sum and product of 
the roots of a quadratic equation, ax 2 1 bx 1 c 5 0, in terms of a, b and c.
It is natural to wonder whether a similar method could be found for 
polynomial equations of degree greater than two. 

Using the same approach as in the previous section for quadratic equations, 
let’s consider the general cubic equation ax 3 1 bx2 1 cx 1 d 5 0 whose roots 
are x 5 a, x 5 b and x 5 g. It follows that this general cubic equation can be 

written in the form x 3 1 ​​b _​a ​x 2 1 ​​c _​a ​x 1 ​​d __​a ​ 5 0. Applying the Factor Theorem, 
it can also be written in the form (x 2 a)(x 2 b)(x 2 g) 5 0. Expanding 
the brackets gives:

(x 2 a)(x 2 b)(x 2 g) 5 x 3 2 ax 2 2 bx 2 2 gx 2 1 abx 1 bgx 1 agx         
                                              2 abg 
                                          5 0

x 3 2 (a 1 b 1 g) x 2 1 (ab 1 bg 1 ag)x 2 abg 5 0

Equating coefficients for x 3 1 ​​b _​a ​ x 2 1 ​​c _​a ​x 1 ​​d __​a ​ 5 0 and x 3 2 (a 1 b 1 g)x 2 
1 (ab 1 bg 1 ag)x 2 abg 5 0 gives us the following results for the sum 
and product of the roots for any cubic equation.

a 1 b 1 g 5 2​​b _​
a

 ​  and abg 5 2​​d __​
a

 ​

This result for the sum and product of the roots of any cubic equation 
looks very similar to that for any quadratic equation. The only  
difference is that the product of the roots, abg, is the opposite of the 

quotient ​​ constant term  ______________​​
leading coefficient

 ​​. 

For the general quartic equation ax 4 1 bx 3 1 cx 2 1 dx 1 e 5 0 with roots 
a, b, g and , the factored form of the equation expands as follows:

(x 2 a)(x 2 b)(x 2 g)(x 2 ) = 
x 4 2 (a 1 b 1 g 1 )x 2 1 (ab 1 ag 1 a 1 bg 1 b 1 g)x 2 
(abg 1 ab 1 ag 1 bg) 1 abg 5 0

Since this is equivalent to x 4 1 ​​b _​a ​ x 3 1 ​​c _​a ​ x 2 1 ​​d __​a ​ x 1 ​​e _​a ​ 5 0, then the sum 
and product of the roots for any quartic equation are: 

a 1 b 1 g 1  5 2​​b _​
a

 ​ and abg 5 ​​e _​a ​​.

These results for the sum and product of roots for polynomial equations 
of degree 2 (quadratic), degree 3 (cubic) and degree 4 (quartic) lead to 
the following result for any polynomial function of degree n that we state 
without a formal proof.

Sum and product of the roots (zeros) of any polynomial equation

For the polynomial equation of degree n given by P(x) 5 an x n 1 an 2 1x n 2 1 1 … 1 

a1x 1 a0 5 0, an ≠ 0 the sum of the roots is 2  an 2 1 ____ 
an

   and the product of the roots 

is   
(21)na0 ______ an

  .
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Example 22 

Two of the roots of the equation x 3 2 3x 2 1 kx 1 75 5 0 are opposites. Find 
the values of all the roots and the constant k.

Solution

Let the three unknown roots be represented by a, 2a and b.

Then a 2 a 1 b 5 3 ⇒ b 5 3 and a(2a)b 5 275 ⇒ a(2a)(3) 5 275 ⇒ 
23a2 5 275 ⇒ a2 5 25 ⇒ a 5 ±5

Therefore, the three roots are 5, 25 and 3.

To find the value of k, write the cubic in factored form and expand. 

(x 2 3)(x 1 5)(x 2 5) 5 0 ⇒ (x 2 3)(x 2 2 25) 5 0 
                                               ⇒ x 3 2 3x 2 2 25x 1 75 5 0

Therefore, k 5 225.

Example 23 

Consider the equation 2x 4 2 x 3 2 4x 2 1 10x 2 4 5 0. Given that one of the 
zeros of the equation is r1 5 1 1 i, find the other three zeros r2, r3 and r4.

Solution

There are other strategies (e.g. using factors and polynomial division) but it 
is more efficient to apply what we know about the sum and product of the 
roots (zeros) of a polynomial equation.

Firstly, since r1 5 1 1 i is a zero, then its conjugate must also be a zero; 
hence r2 5 1 2 i.

From the fact that the sum of the roots is – ​​
an 2 1 ____​an

  ​, then r1 1 r2 1 r3 1 r4 5 – ​​
a3 __​a4

 ​. 

Substituting in known values gives 1 1 i 1 1 2 i 1 r3 1 r4 5 2​​21 ___​
2

 ​ 
⇒ 2 1 r3 1 r4 5 ​​1 _​

2 ​ ⇒ r3 1 r4 5 2​​3 _​
2

 ​

Also, since the product of the roots is ​​
(21)n a0 _______​an

  ​, then r1r2r3r4 5 ​​
(21)n a0 _______​an

  ​.  

Substituting gives:

(1 1 i)(1 2 i)r3r4 5 ​​
(21)4(24)

 _________​
2 ​  ⇒ (1 2 i 2)r3r4 5 22 

 ⇒ 2r3r4 5 22 
 ⇒ r3r4 5 21

To find r3 and r3, we need to use the pair of equations ​{ ​​r3 1 r4 5 2​​3 _​
2

 ​
​​​​​​​​​​​​​​​​​​​​​​r3r4 5 21 ​​​​  

Solving for r3 in the first equation gives r3 5 2r4 2 ​​3 _​2 ​.

Substituting into the other equation gives: ​( 2r4 2 ​​3 _​2 ​​)​ r4 5 21

 ⇒ r4
2 1 ​​3 _​

2
 ​ r4 2 1 5 0

 ⇒ 2r4
2 1 3r4 2 2 5 0

 ⇒ (2r4 2 1)(r4 1 2) 5 0

 ⇒ r4 5 ​​1 _​2 ​ or r4 5 2 2
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If r4 5 ​​1 _​
2 ​, then r3 5 2 ​​1 _​

2 ​ 2 ​​3 _​
2 ​ 5 22. ​[ And if r4 5 22, then r3 5 ​​1 _​

2 ​​]​
Therefore the other three zeros are 1 2 i, ​​1 _​

2 ​ and 22.

In questions 1–5, two polynomials P and D are given. Use either synthetic division or 
long division to divide P(x) by D(x), and express P(x) in the form 
P(x) 5 D(x)  Q(x) 1 R(x).

 1 P(x) 5 3x  2 1 5x 2 5,  D(x) 5 x 1 3

 2 P(x) 5 3x  4 2 8x  3 1 9x 1 5,  D(x) 5 x 2 2

 3 P(x) 5 x  3 2 5x  2 1 3x 2 7,  D(x) 5 x 2 4

 4 P(x) 5 9x  3 1 12x  2 2 5x 1 1,  D(x) 5 3x 2 1

 5 P(x) 5 x  5 1 x  4 2 8x  3 1 x 1 2,  D(x) 5 x  2 1 x 2 7

 6 Given that x 2 1 is a factor of the function f  (x  ) 5 2x  3 2 17x  2 1 22x 2 7 
factorize f completely.

 7 Given that 2x 1 1 is a factor of the function f  (x  ) 5 6x  3 2 5x  2 2 12x 2 4 
factorize f completely.

 8 Given that x 1   2 _ 3   is a factor of the function f  (x  ) 5 3x  4 1 2x  3 2 36x 2 1 24x 1 32 
factorize f completely.

In questions 9–12, find the quotient and the remainder.

 9   x  2 2 5x 1 4 ___________ x 2 3
   10   x

3 1 2x  2 1 2x 1 1  ________________ x 1 2
  

11   9x  2 2 x 1 5 ___________ 
3x  2 2 7x    12   x  5 1 3x 3 2 6 ___________ x 2 1

  

In questions 13–16, use synthetic division and the remainder theorem to evaluate P(c).

13 P(x) 5 2x  3 2 3x  2 1 4x 2 7, c 5 2

14 P(x) 5 x  5 2 2x  4 1 3x  2 1 20x 1 3, c 5 21

15 P(x) 5 5x  4 1 30x  3 2 40x  2 1 36x 1 14, c 5 27

16 P(x) 5 x  3 2 x 1 1, c 5   1 _ 4  

17 Given that x 5 26 is a zero of the polynomial x  3 1 2x  2 2 19x 1 30 find all 
remaining zeros of the polynomial.

18 Given that x 5 2 is a double root of the polynomial x  4 2 5x  3 1 7x2 2 4 find all 
remaining  zeros of the polynomial.

19 Find the values of k such that 23 is a zero of f  (x) 5 x  3 2 x  2 2 k  2x.

20 Find the values of a and b such that 1 and 4 are zeros of 
f  (x) 5 2x 4 2 5x  3 2 14x  2 1 ax 1 b.

In questions 21–23, find a polynomial with real coefficients satisfying the given 
conditions.

21 Degree of 3; and zeros of 22, 1 and 4

22 Degree of 4; and zeros of 21, 3 (multiplicity of 2) and 22

23 Degree of 3; and 2 is the only zero (multiplicity of 3)

In questions 24–26, find a polynomial of lowest degree with real coefficients and the 
given zeros.

24 x 5 21 and x 5 1 2 i

Exercise 3.3
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25 x 5 2, x 5 24 and x 5 23i

26 x 5 3 1 i and x 5 1 2 2i

27 Given that x 5 2 2 3i is a zero of f  (x) 5 x  3 2 7x  2 1 25x 2 39 find the other 
remaining zeros.

28 The polynomial 6x  3 1 7x  2 1 ax 1 b has a remainder of 72 when divided by 
x 2 2 and is exactly divisible (i.e. remainder is zero) by x 1 1.

a) Calculate a and b.
b) Show that 2x 2 1 is also a factor of the polynomial and, hence, find the third 

factor.

29 The polynomial p(x) 5 (ax 1 b)3 leaves a remainder of 21 when divided by 
x 1 1, and a remainder of 27 when divided by x 2 2. Find the values of the real 
numbers a and b.

30 The quadratic polynomial x  2 2 2x 2 3 is a factor of the quartic polynomial 
function f  (x) 5 4x  4 2 6x  3 2 15x  2 2 8x 2 3. Find all of the zeros of the function 
f. Express the zeros exactly and completely simplified.

31 x 2 2 and x 1 2 are factors of x  3 1 ax  2 1 bx 1 c, and it leaves a remainder of 10 
when divided  by x 2 3. Find the values of a,­b and c.

32 Let P (x) 5 x 3 1 px  2 1 qx 1 r. Two of the zeros of P(x) 5 0 are 3 and 1 1 4i. Find 
the value  of p, q and r.

33 When divided by (x 1 2) the expression 5x  3 2 3x 2 1 ax 1 7 leaves a remainder 
of R. When  the expression 4x  3 1 ax  2 1 7x 2 4 is divided by (x 1 2) there is a 
remainder of 2R. Find the value of the constant a.

34 The polynomial x  3 1 mx  2 1 nx 2 8 is divisible by (x 1 1 1 i). Find the value of 
m and n.

35 Given that the roots of the equation x  3 2 9x  2 1 bx 2 216 5 0 are consecutive 
terms in a geometric sequence, find the value of b and solve the equation.

36 a)  Prove that when a polynomial P(x) is divided by ax 2 b the remainder is 

  P (   b __ 
a

   ) .

b) Hence, find the remainder when 9x  3 2 x 1 5 is divided by 3x 1 2.

37 Find the sum and product of the roots of the following equations.

 a) x 4 2   2 __ 3  x 3 1 3x 2 2 2x 1 5 5 0

 b) (x 2 2)3 5 x 4 2 1

 c)   3 ______ x 2 1 2
   5   2x 2 2 x _______ 

2x 5 1 1
  

38 If a, b and g are the three roots of the cubic equation ax 3 1 bx 2 1 cx 1 d 5 0, 

show that ab 1 ag 1 bg 5   c __ a  .

39 One of the zeros of the equation x 3 2 63x 1 162 5 0 is double another zero. 
Find all three zeros.

40 Find the three zeros of the equation x 3 2 6x 2 2 24x 1 64 5 0 given that 
they are consecutive terms in a geometric sequence. [Hint: let the zeros be 
represented by   a __ r  , a, ar where r is the common ratio.]

41 Consider the equation x 5 2 12x 4 1 62x 3 2 166x 2 1 229x 2 130 5 0. 
Given that two of the zeros of the equation are x 5 3 2 2i and x = 2, find the 
remaining three zeros.

42 Find the value of k such that the zeros of the equation x 3 2 6x 2 1 kx 1 10 5 0 
are in arithmetic progression, that is, they can be represented by a, a 1 d and 
a 1 2d for some constant d. [Hint: use the result from question 38.]

43 Find the value of k if the roots of the equation x 3 1 3x 2 2 6x 1 k 5 0 are in 
geometric progression.
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 4.5 Counting principles

Simple counting problems
This section will introduce you to some of the basic principles of counting. 
In Section 4.6 you will apply some of this in justifying the binomial 
theorem and in Chapter 12 you will use these principles to tackle many 
probability problems. We will start with two examples.

28 A ball is dropped from a height of 16 m. Every time it hits the ground it bounces 
81% of its previous height.

a) Find the maximum height it reaches after the 10th bounce.

b) Find the total distance travelled by the ball till it rests. (Assume no friction and 
no loss of elasticity).

29 

The sides of a square are 16 cm in length. A new square is formed by joining the 
midpoints of the adjacent sides and two of the resulting triangles are coloured 
as shown. 

a) If the process is repeated 6 more times, determine the total area of the 
shaded region.

b) If the process is repeated indefinitely, find the total area of the shaded region.

30 

The largest rectangle has dimensions 4 by 2, as shown; another rectangle is 
constructed inside it with dimensions 2 by 1. The process is repeated. The region 
surrounding every other inner rectangle is shaded, as shown. 

a) Find the total area for the three regions shaded already.

b) If the process is repeated indefinitely, find the total area of the shaded 
regions.

In questions 31–34, find each sum.

31 7 1 12 1 17 1 22 1 … 1 337 1 342

32 9486 1 9479 1 9472 1 7465 1 … 1 8919 1 8912

33 2 1 6 1 18 1 54 1 … 1 3 188 646 1 9 565 938

34 120 1 24 1   24 ___ 5   1   24 ___ 25   1 … 1   24 ______ 78 125  

4 cm

2 cm 2 cm

1 cm
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Example 21�

Nine paper chips each carrying the numerals 1–9 are placed in a box. Two 
chips are chosen such that the first chip is chosen, the number is recorded 
and the chip is put back in the box, then the second chip is drawn. The 
numbers on the chips are added. In how many ways can you get a sum of 8?

Solution

To solve this problem, count the different number of ways that a total of 8 
can be obtained:

1st chip 1 2 3 4 5 6 7

2nd chip 7 6 5 4 3 2 1

From this list, it is clear that you can have 7 different ways of receiving a 
sum of 8.

Example 22�

Suppose now that the first chip is chosen, the number is recorded and 
the chip is not put back in the box, then the second chip is drawn. In how 
many ways can you get a sum of 8?

Solution

To solve this problem too, count the different number of ways that a total 
of 8 can be obtained:

1st chip 1 2 3 5 6 7

2nd chip 7 6 5 3 2 1

From this list, it is clear that you can have 6 different ways of receiving a 
sum of 8.

The difference between the two situations is described by saying that 
the first random selection is done with replacement, while the second is 
without replacement, which ruled out the use of two 4s.

Fundamental principle of counting
The above examples show you simple counting principles in which you 
can list each possible way that an event can happen. In many other cases, 
listing the ways an event can happen may not be feasible. In such cases 
we need to rely on counting principles. The most important of which is 
the fundamental principle of counting, also known as the multiplication 
principle. Consider the following situations:

Example 23�

You can make a sandwich from one of three types of bread and one of 
four kinds of cheese, with or without pickles. How many different kinds of 
sandwiches can be made?
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Solution

With each type of bread you can have 4 sandwiches. There are 12 possible 
sandwiches altogether. These are without pickles; if you want sandwiches 
with pickles, then you have 24 possible ones. That is, there are 3 3 4 3 2 5 24 
possible sandwiches.

Example 24�

How many 3-digit even numbers are there?

Solution

The first digit cannot be zero, since the number has to be a 3-digit number, 
so there are 9 ways the hundred’s digit can be. There is no condition on 
what the ten’s digit should be, so we have 10 possibilities, and to be even, 
the number must end with 0, 2, 4, 6, or 8. Therefore, we have  
9 3 10 3 5 5 450 3-digit even numbers.

Examples 23 and 24 are examples of the following principle:

Fundamental principle of counting
If there are m ways an event can occur followed by n ways a second event can occur, 
then there are a total of (m)(n) ways that the two can occur.

This principle can be extended to more than two events or processes:

If there are k events than can happen in n1, n2, …, nk ways, then the whole sequence can 
happen in 

n1 3 n2 3 … 3 nk ways.

Example 25�

A large school issues special coded identification cards that consist of two 
letters of the alphabet followed by three numerals. For example, AB 737 
is such a code. How many different ID cards can be issued if the letters or 
numbers can be used more than once? 

Solution

As the letters can be used more than once, then each letter position can 
be filled in 26 different ways, i.e. the letters can be filled in 26 3 26 5 676 
ways. Each number position can be filled in 10 different ways; hence, the 
numerals can be filled in 10 3 10 3 10 5 1000 different ways. So, the code 
can be formed in 676 3 1000 5 676 000 different ways.

Permutations
One major application of the fundamental principle is in determining 
the number of ways the n objects can be arranged. Consider the following 
situation for example. You have 5 books you want to put on a shelf: maths 
(M), physics (P), English (E), biology (B), and history (H). In how many 
ways can you do this? 
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To find this out, number the positions you want to place the books in as 
shown

 1 2 3 4 5

If we decide to put the maths book in position 1, then there are four 
different ways of putting a book in position 2.

M P M E M B M H

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Since we can put any of the 5 books in the first position, then there will be  
5 3 4 5 20 ways of shelving the first two books. Once you place the books 
in positions 1 and 2, the third book can be any one of three books left.

M P E M P B M P H

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Once you use three books, there are two books for the fourth position 
and only one way of placing the fifth book. So, the number of ways of 
arranging all 5 books is 

5 3 4 3 3 3 2 3 1 5 120 5 5!

Factorial notation
The product of the first n positive integers is denoted by n! and is called n factorial:

n! 5 1 3 2 3 3 3 4 … (n 2 2) 3 (n 2 1) 3 n

We also define 0! 5 1.

Permutations
An arrangement is called a permutation. It is the reorganization of objects or symbols 
into distinguishable sequences. When we place things in order, we say we have made an 
arrangement. When we change the order, we say we have changed the arrangement. So 
each of the arrangements that can be made by taking some or all of a number of things 
is known as a permutation.

Number of permutations of n objects

The previous set up can be applied to n objects rather than only 5. The 
number of ways of filling in the first position can be done in n ways. 

n n21 n22 n23
…

1

1 2 3 4 n

Once the first position is filled, the second position can be filled by any of 
the n 2 1 objects left, and hence using the fundamental principle there will 
be n  (n 2 1) different ways for filling the first two positions. Repeating the 
same procedure till the nth position is filled is therefore

n  (n 2 1)  (n 2 2) … 2  1 5 n!

Frequently, we are engaged in arranging a subset of the whole collection 

 Hint: A permutation of n different 
objects can be understood as an 
ordering (arrangement) of the 
objects such that one object is first, 
one is second, one is third, and so 
on.
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rather than the entire collection. For example, suppose we want to shelve 
3 of the books rather than all 5 of them. The discussion will be analogous 
to the previous situation. However, we have to limit our search to the first 
three positions only, i.e. the number of ways we can shelve three out of the 
5 books is

5 3 4 3 3 5 60

To change this product into factorial notation, we do the following:

5 3 4 3 3 5 5 3 4 3 3 3   2! __ 
2!

   5   5 3 4 3 3 3 2 3 1  ________________ 
2!

   5   5! __ 
2!

   

5   5! _______ 
(5 2 3)!

  

This leads us to the following general result.

Number of permutations of n objects taken r at a time

The number of permutations of n objects taken r at a time is
nPr 5 nPr 5 P nr 5 P(n, r) 5   n! ______ 

(n 2 r)!
  ; n > r

To verify the formula above, you can proceed in the same manner as with 
the permutation of n objects.

n n 2​1 n 2​2 n 2​3 n 2​(r 2​1)

↓ ↓ ↓ ↓ … ↓

1 2 3 4 r

When you arrive to the rth position, you would have used r 2 1 objects 
already, and hence you are left with n 2 (r 2 1) 5 n 2 r 1 1 objects to fill 
this position. So, the number of ways of arranging n objects taken r at a 
time is

nPr 5 n  (n 2 1)  (n 2 2) … (n 2 r 1 1)

Here again, to make the expression more manageable, we can write it in 
factorial notation:

nPr 5 n  (n 2 1)  (n 2 2) … (n 2 r 1 1) 

 5 n  (n 2 1)  (n 2 2) … (n 2 r 1 1)   
(n 2 r)!

 _______ 
(n 2 r)!

  

5   
n  (n 2 1)  (n 2 2) … (n 2 r 1 1)  (n 2 r)!

    ____________________________________  
(n 2 r)!

   5   n! _______ 
(n 2 r)!

  

Example 26�

15 drivers are taking part in a Formula 1 car race. In how many different 
ways can the top 6 positions be filled?
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Solution

Since the drivers are all different, this is a permutation of 15 ‘objects’ taken 
6 at a time.

15P6 5   15! ________ 
(15 2 6)!

   5 3 603 600

This can also be easily calculated using a GDC.

Combinations
A combination is a selection of some or all of a number of different 
objects. It is an unordered collection of unique sizes. In a permutation, the 
order of occurrence of the objects or the arrangement is important, but in 
combination the order of occurrence of the objects is not important. In 
that sense, a combination of r objects out of n objects is a subset of the set 
of n objects.

For example, there are 24 permutations of three letters out of ABCD, while 
there are only 4 combinations! Here is why:

ABC
ACB
BAC
BCA
CAB
CBA

ABD
ADB
BAD
BDA
DAB
DBA

ACD
ADC
CAD
CDA
DAC
DCA

BCD
BDC
CBD
CDB
DBC
DCB

For one combination, ABC for example, there are 3! 5 6 permutations. 
This is true for all combinations. So, the number of permutations is 6 
times the number of combinations, i.e. 

4P3 5 3! 4C3

where 4C3 is the number of combinations of the 4 letters taken 3 at a time.

According to the previous result, we can write

4C3 5   
4P3 ___ 
3!

   5   
  4! _______ 
(4 2 3)!

  
 _______ 

3!
   5   4! _________ 

3!(4 2 3)!
  

The last result can also be generalized to n elements combined r at a time. 
(The ISO notation for this quantity, which is also used by the IB is  (  n   r   ) . In 
this book, we will follow the ISO notation.)

Every subset of r objects (combination), gives rise to r! permutations. 
So, if you have  (  n   r   )  combinations, these will result in r! (  n   r   )  permutations. 
Therefore,

nPr 5​r!  (  n   r   )  ⇔   (  n   r   )  5   
nPr ___ 
r!

   5   
  n! _______ 
(n 2 r)!

  
 _______ 

r!
   5   n! ________ 

(n 2 r)!r!
  

15 nPr 6
3603600
3603600

15!/9!

 (   n     r   )  =   n! ______ 
r!(n – r)!

   =  (   n           n – r    ) . This 

symmetry is obvious as when 
we pick r objects, we leave n – r 
objects behind, and hence the 
number of ways of choosing 
r objects is the same as the 
number of ways of n – r objects 
not chosen.
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Example 27�

A lottery has 45 numbers. If you buy a ticket, then you choose 6 of these 
numbers. How many different choices does this lottery have?

Solution

Since 6 numbers will have to be chosen and order is not an issue here, this 
is a combination case. The number of possible choices is 

 (   45      6   )  5 8 145 060.

This can also be calculated using a GDC.

Example 28�

In poker, a deck of 52 cards is used, and a ‘hand’ is made up of 5 cards.

a) How many hands are there?

b) How many hands are there with 3 diamonds and 2 hearts?

Solution

a) Since the order is not important, as a player can reorder the cards after 
receiving them, this is a combination of 52 cards taken 5 at a time:

 (   52       5   )  5 2 598 960.

b) Since there are 13 diamonds and we want 3 of them, there are 

  (   13       3   )  5 286 ways to get the 3 diamonds. Since there are 13 hearts and 

 we want 2 of them, there are  (   13       2   )  5 78 ways to get the 2 hearts. Since 

 we want them both to occur at the same time, we use the fundamental 
counting principle and multiply 286 and 78 together to get 22 308 
possible hands.

Example 29�

A code is made up of 6 different digits. How many possible codes are there?

Solution

Since there are 10 digits and we are choosing 6 of them, and since the 
order we use these digits makes a difference in the code, then this is a 
permutation case. The number of possible codes is

10P6 5 151 200.

45 nCr 6
8145060

52 nCr 5

13 nCr 3
286

78
13 nCr 2

2598960

Exercise 4.5

 1 Evaluate each of the following expressions.

a) 5P5 b) 5! c) 20P1 d) 8P3



181

 2 Evaluate each of the following expressions.

a)  (  5   5  )  b)  (  5   0  )  c)  (   10       3   )  d)  (   10       7   ) 

 3 Evaluate each of the following expressions.

a)  (  7   3  )  1  (  7   4  )  b)  (  8   4  )  c)  (   10       6   )  1  (   10       7   )  d)  (   11       7   ) 

 4 Evaluate each of the following expressions.

a)  (  8   5  )  2  (  8   3  )  b) 11  10! c)  (   10       3   )  2  (   10       7   )  d)  (   10       1   ) 

 5 Tell whether each of the following expressions is true.

a)   10! ___ 
5!

   5 2! b) (5!)2 5 25! c)  (   101         8   )  5  (   101         93   ) 

 6 You are buying a computer and have the following choices: three types of 
HD, two types of DVD players, four types of graphic cards. How many different 
systems can you choose from?

 7 You are going to a restaurant with a set menu. They have three starters, four main 
meals, two drinks, and three deserts. How many different choices are available 
for you to choose your meal from?

 8 A school is in need of three teachers: PE, maths, and English. They have 8 
applicants for the PE position, 3 applicants for the maths position and 13 
applicants for English. How many different combinations of choices do they 
have?

 9 You are given a multiple choice test where each question has four possible 
answers. The test is made up of 12 questions and you are guessing at random. In 
how many ways can you answer all the questions on the test?

10 The test in question 9 is divided into two parts, the first six are true/false 
questions and the last six are multiple choice as described. In how many 
different ways can you answer all questions on that test?

11 Passwords on a network are made up of two parts. One part consists of 
three letters of the alphabet, not necessarily different, and five digits, also not 
necessarily different. How many passwords are possible on this network?

12 How many 5-digit numbers can be made if the units digit cannot be 0?

13 Four couples are to be seated in a theatre row. In how many different ways can 
they be seated if

a) no restrictions are made

b) every two members of each couple like to sit together?

14 Five girls and three boys should go through a doorway in single file. In how 
many orders can they do that if

a) there are no constraints

b) the girls must go first?

15 Write all the permutations of the letters in JANE.

16 Write all the permutations of the letters in MAGIC taken three at a time.
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17 A computer code is made up of three letters followed by four digits.

a) In how many ways is the code possible?

b) If 97 of the three-letter combinations cannot be used because they are 
offensive, how many codes are still possible?

18 A local bridge club has 17 members, 10 females and 7 males. They have to elect 
three officers: president, deputy, and treasurer. In how many ways is this  
possible if

a) there are no restrictions

b) the president is a male

c) the deputy must be a male, the president can be any gender, but the 
treasurer must be a female

d) the president and deputy are of the same gender

e) all three officers are not the same gender.

19 The research and development department for a computer manufacturer has 26 
employees: 8 mathematicians, 12 computer scientists, and 6 electrical engineers. 
They need to select three employees to be leaders of the group. In how many 
ways can they do this if

a) the three officers are of the same specialization

b) at least one of them must be an engineer

c) two of them must be mathematicians?

20 A ‘combination’ lock has three numbers, each in the range 1 to 50.

a) How many different combinations are possible?

b) How many combinations do not have duplicates?

c) How many have the first and second numbers matching?

d) How many have exactly two of the numbers matching?

21 In how many ways can five married couples be seated around a circle so that 
spouses sit together?

22 a) How many subsets of {1, 2, 3, …, 9} have two elements?

b) How many subsets of {1, 2, 3, …, 9} have an odd number of elements?

23 Nine seniors and 12 juniors make up the maths club at a school. They need four 
members for an upcoming competition.

a) How many 4-member teams can they form?

b) How many of these 4-member teams have the same number of juniors and 
seniors?

c) How many of these 4-member teams have more juniors than seniors?

24 This problem uses the same data as question 23 above. Tim, a junior, is the 
strongest ‘mathlete’ among his group while senior Gwen is the strongest among 
her group. Either Tim or Gwen must be on the team, but they cannot both be on 
the team. Answer the same questions as above.

25 A shipment of 100 hard disks contains 4 defective disks. We choose a sample of 6 
disks for inspection.

a) How many different possible samples are there?

b) How many samples could contain all 4 defective disks? What percentage of 
the total is that?

c) How many samples could contain at least 1 defective disk? What percentage 
of the total is that?
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 4.6 The binomial theorem
A binomial is a polynomial with two terms. For example, x 1 y is a 
binomial. In principle, it is easy to raise x 1 y to any power; but raising 
it to high powers would be tedious. We will find a formula that gives the 
expansion of (x 1 y)n for any positive integer n. The proof of the binomial 
theorem is given in Section 4.7.

Let us look at some special cases of the expansion of (x 1 y)n:

(x 1​y)0 5 1

(x 1​y)1 5 x 1 y

(x 1​y)2 5 x 2 1 2xy 1 y 2

(x 1​y)3 5 x 3 1 3x 2y 1 3xy 2 1 y 3

(x 1​y)4 5 x 4 1 4x 3y 1 6x 2y 2 1 4xy 3 1 y 4

(x 1​y)5 5 x 5 1 5x 4y 1 10x 3y 2 110x 2y 3 1 5xy 4 1 y 5

(x 1​y)6 5 x 6 1 6x 5y 1 15x 4y 2 1​20x 3y 3 1 15x 2y 4 1 6xy 5 1 y 6

There are several things that you will have noticed after looking at the 
expansion: 

• There are n 1 1 terms in the expansion of (x 1 y)n.

• The degree of each term is n. 

• The powers on x begin with n and decrease to 0.

• The powers on y begin with 0 and increase to n. 

• The coefficients are symmetric. 

For instance, notice how the exponents of x and y behave in the expansion of 
(x 1 y)5.

The exponents of x decrease:

(x 1 y)5 5 x 5u 1 5x 4uy 1 10x 3uy 2 1 10x 2uy 3 1 5x 1uy 4 1 x 0uy 5

The exponents of y increase:

(x 1 y)5 5 x 5y  0u 1 5x 4y  1u 1 10x 3y  2u 1 10x 2y  3u 1 5xy 4u 1 y  5u

Using this pattern, we can now proceed to expand any binomial raised to 
power n: (x 1 y)n. For example, leaving a blank for the missing coefficients, 
the expansion for (x 1 y)7 can be written as

(x 1 y)7

5 ux 7 1 ux 6y  1ux 5y 2 1 ux 4y 3 1 ux 3y 4 1 ux 2y 5 1 uxy 6 1 uy 7

26 There are three political parties represented in a parliament: 10 conservatives, 8 
liberals, and 4 independents. A committee of 6 members is needed to be set up.

a) How many different committees are possible?

b) How many committees with equal representation are possible?

27 How many ways are there for 9 boys and 6 girls to stand in a line so that no two 
girls stand next to each other?
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To finish the expansion we need to determine these coefficients. In order 
to see the pattern, let us look at the coefficients of the expansion we started 
the section with.

1
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(x � y)0

(x � y)1

(x � y)2

(x � y)3

(x � y)4

(x � y)5

(x � y)6

row 0

row 1

row 2

row 3

row 4

row 5

row 6

0 1 2 3 4 5 6

1

2

3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1

6 1

A triangle like the one above is known as Pascal’s triangle. Notice how the 
first and second terms in row 3 give you the second term in row 4; the 
third and fourth terms in row 3 give you the fourth term of row 4; the 
second and third terms in row 5 give you the third term in row 6; and the 
fifth and sixth terms in row 5 give you the sixth term in row 6, and so on. 
So now we can state the key property of Pascal’s triangle.

Pascal’s triangle
Every entry in a row is the sum of the term directly above it and the entry diagonally 
above and to the left of it. When there is no entry, the value is considered zero.

Take the last entry in row 5, for example; there is no entry directly above it, 
so its value is 0 1 1 5 1.

From this property it is easy to find all the terms in any row of Pascal’s 
triangle from the row above it. So, for the expansion of (x 1 y)7, the terms 
are found from row 6 as follows:

0 1 6 15 20 15 6 1 0

1 7 21 35 35 21 7 1

So, (x  1 y)7 5 x 7 1 u7  x 6y  1 u21 x 5y 2 1 u35 x 4y 3 1 u35 x 3y 4 1 u21 x 2y 5 

 1 u7  xy 6 1 y 7.

Note: Several sources use a slightly different arrangement for Pascal’s 
triangle. The common usage considers the triangle as isosceles and uses 
the principle that every two entries add up to give the entry diagonally 
below them, as shown in the following diagram. 

1

2

6

1

3

10

1

4
1

5
1

1

1

3

10

1

4
1

5
1

1

        Pascal’s triangle was known 
to Persian and Chinese 
mathematicans in the 13th 
century.
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Example 30 

Use Pascal’s triangle to expand (2k 2 3)5.

Solution

We can find the expansion above by replacing x by 2k and y by 23 in the 
binomial expansion of (x 1 y)5.

Using the fifth row of Pascal’s triangle for the coefficients will give us the 
following:

1(2k)5 1 5(2k)4(23) 1 10(2k)3(23)2 1 10(2k)2(23)3 1 5(2k)(23)4 
 1 1(23)5 5 32k 5 2 240k 4 1 720k 3 2 1080k 2 1 810k 2 243.

Pascal’s triangle is an easy and useful tool in finding the coefficients of the 
binomial expansion for relatively small values of n. It is not very efficient 
doing that for large values of n. Imagine you want to evaluate (x 1 y)20. 
Using Pascal’s triangle, you will need the terms in the 19th row and the 
18th row and so on. This makes the process tedious and not practical. 

Luckily, we have a formula that can find the coefficients of any Pascal’s 
triangle row. This formula is the binomial formula, whose proof is beyond 

the scope of this book. Every entry in Pascal’s triangle is denoted by  (  n   r   ) , 
which is also known as the binomial coefficient.

In  (  n   r   ) , n is the row number and r is the column number. 

The factorial notation makes many formulae involving the multiplication 
of consecutive positive integers shorter and easier to write. That includes 
the binomial coefficient.

The binomial coefficient
With n and r as non-negative integers such that n > r, the binomial coefficient  (  n   r   )  is 
defined by

  (  n   r   )  5   n! _______ 
r!(n 2 r)! 

   

Example 31 

Find the value of a)  (  7   3  )    b)  (  7   4  )    c)  (  7   0  )    d)  (  7   7  ) 

Solution

a)  (  7   3  )  5   7! _________ 
3!(7 2 3)!

   5   7! ____ 
3!4!

   5   1    2    3    4    5    6    7  _________________  
(1    2    3)(1    2    3    4)

   5   5    6    7 ______ 
1    2    3

   5 35
     

b)  (  7   4  )  5   7! _________ 
3!(7 2 4)!

   5   7! ____ 
4!3!

   5   1    2    3    4    5    6    7  _________________  
(1    2    3    4)(1    2    3)

   5   5    6    7 ______ 
1    2    3

   5 35
  
  

c)  (  7   0  )  5   7! _________ 
0!(7 2 0)!

   5   7/ ! ____ 
0!7/ !

   5   1 __ 
1

   5 1

d)  (  7   7  )  5   7! _________ 
7!(7 2 7)!

   5   7/ ! ____ 
7/ !0!

   5   1 __ 
1

   5 1

 Hint: Your calculator can do 
the tedious work of evaluating the 
binomial coefficient. If you have a 
TI, the binomial coefficient appears 
as nCr, which is another notation 
frequently used in mathematical 
literature.

7 nCr 3

7 nCr 4

7 nCr 0

35

35

1
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Although the binomial coefficient  (  n   r   )  appears as a fraction, all its results 
where n and r are non-negative integers are positive integers. Also, notice 
the symmetry of the coefficient in the previous examples. This is a 
property that you are asked to prove in the exercises:

 (  n   r   )  5  (   n     n 2 r  ) 

Example 32 

Calculate the following:

 (   6     0   ) ,  (   6     1   ) ,  (   6     2   ) ,  (   6     3   ) ,  (   6     4   ) ,  (   6     5   ) ,  (   6     6   ) 

Solution

  (   6     0   )  5 1,  (   6     1   )  5 6,  (   6     2   )  5 15,  (   6     3   )  5 20,  (   6     4   )  5 15,  (   6     5   )  5 6,  (   6     6   )  5 1

The values we calculated above are precisely the entries in the sixth row of 
Pascal’s triangle.

We can write Pascal’s triangle in the following manner:

 (   0     0   ) 

 (   1     0   )  (   1     1   ) 

 (   2     0   )  (   2     1   )  (   2     2   ) 

 (   3     0   )  (   3     1   )  (   3     2   )  (   3     3   ) 

… … … …

 (   n     0   )  (   n     1   ) … … … …  (   n     n   ) 

Example 33 

Calculate  (   n        r 2 1  )  1  (   n     r   ) .    Hint: You will be able to provide reasons for

 the steps after you do the exercises!

This is called Pascal’s rule.

Solution

 (   n        r 2 1  )  1  (  n   r   )   5   n! _________________  
(r 2 1)!(n 2 r 1 1)!

   1   n! ________ 
r!(n 2 r)!

   

 5   n!    r  ___________________  
r    (r 2 1)!(n 2 r 1 1)!

   1   
n!    (n 2 r 1 1)

  ___________________  
r!(n 2 r)!    (n 2 r 1 1)

   

​ 5   n!    r ____________  
r!(n 2 r 1 1)!

   1 ​​
n!    (n 2 r 1 1)

  _____________  
r!(n 2 r 1 1)!

 ​

 5   
n!    r 1 n!    (n 2 r 1 1)

  ___________________  
r!(n 2 r 1 1)!

 ​ 5 ​​
n!(r 1 n 2 r 1 1)

  _______________  
r!(n 2 r 1 1)!

 ​​

​ 5 ​​
n!(n 1 1)

 ____________  
r!(n 2 r 1 1)!

 ​ 5 ​​
(n 1 1)!

 ____________  
r!(n 1 1 2 r)!

 ​ 5 ​( ​n 1 1 ​​​​ r  ​​)​
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If we read the result above carefully, it says that the sum of the terms in the 
nth row (r 2 1)th and rth columns is equal to the entry in the (n 1 1)th row 
and rth column. That is, the two entries on the left are adjacent entries in the 
nth row of Pascal’s triangle and the entry on the right is the entry in the 
(n 1 1)th row directly below the rightmost entry. This is precisely the 
principle behind Pascal’s triangle!

Using the binomial theorem
We are now prepared to state the binomial theorem. The proof of the 
theorem is optional and will require mathematical induction. We will 
develop the proof in Section 4.7.

(x 1 y)n 5 ​(  ​​n ​​​0 ​​)​  x n  1 ​(  ​​n ​​​1 ​​)​ x n 2 1y  1 ​(  ​​n ​​​2 ​​)​ x n 2 2y 2  1 ​(  ​​n ​​​3 ​​)​ xn 2 3y3  1  …  1 ​(  ​​ n ​​​​​​​​​n 2 1 ​​)​xy n 2 1  1 ​(  ​​n ​​​n ​​)​ y n

In a compact form, we can use sigma notation to express the theorem as 
follows:

(x 1 y)n 5  ∑ 
i 5 0

  

n

        (  n   
i
   ) xn 2 i yi 

Example 34 

Use the binomial theorem to expand (x 1 y)7.

Solution 

(x 1 y)7 5  (   7     0   ) x 7 1  (   7     1   ) x 7 2 1y 1  (   7     2   ) x 7 2 2y 2 1  (   7     3   ) x 7 2 3y 3 1  (   7     4   ) x 7 2 4y 4

    1  (   7     5   ) x 7 2 5y 5 1  (   7     6   ) xy 6 1  (   7     7   ) y 7

 5 x 7 1 7x 6y 1 21x 5y 2 1 35x 4y 3 1 35x 3y 4 1 21x 2y 5 1 7xy 6 1 y 7

Example 35 

Find the expansion for (2k 2 3)5.

Solution

(2k 2 3)5 5  (   5     0   ) (2k)5 1  (   5     1   ) (2k)4(23) 1  (   5     2   ) (2k)3(23)2 1  (   5     3   ) (2k)2(23)3 

   1  (   5     4   ) (2k)(23)4 1  (   5     5   ) (23)5

 5 32k 5 2 240k 4 1 720k 3 2 1080k 2 1 810k 2 243

Example 36 

Find the term containing a3 in the expansion (2a 2 3b)9.

Note: Why is the binomial 
theorem related to the number 
of combinations of n elements 
taken r at a time?

Consider evaluating (x 1 y)n. In 
doing so, you have to multiply 
(x 1 y) n times by itself. As you 
know, one term has to be x n. 
How to get this term? x n is the 
result of multiplying x in each 
of the n factors (x 1 y) and that 
can only happen in one way. 
However, consider the term 
containing x r. To have a power 
of r over the x, means that the 
x in each of r factors has to be 
multiplied, and the rest will be 
the n 2 r y-terms. This can 

happen in  (   n     r   )  ways. Hence, 
the coefficient of the term 

x ry n 2 r is  (   n     r   ) .
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Solution

To find the term, we do not need to expand the whole expression. 

Since (x 1 y)n 5  ∑ 
i 5 0

  

n

        (   n     
i
   )  xn 2 i yi , the term containing a3 is the term where

n 2 i 5 3, i.e. when i 5 6. So, the required term is

 (   9     6   ) (2a)9 2 6(23b)6 5 84    8a3    729b6 5 489  888a3b6.

Example 37 

Find the term independent of x in   ( 4x 3 –   2 __ 
x 2

   )  
5
 .

Solution 

The phrase ‘independent of x’ means the term with no x variable, i.e. the 
constant term. A constant is equivalent to the product of a number and 
x 0, since x 0 = 1. We are looking for the term in the expansion such that the 
resulting power is zero. In terms of i, each term in the expansion is given by

 (  5   
i
  ) (4x 3)5 – i (–2x –2)i

Thus, for the constant term:

3(5 – i) – 2i = 0 ⇒ 15 – 5i = 0 ⇒ i = 3

Therefore, the term independent of x is:

 (  5   3  ) (4x 3)2(–2x –2)3 = 10    16x 6(–8x –6) = –1280

Example 38 

Find the coefficient of b 6 in the expansion of  ( 2b 2 2   1 __ 
b

   ) 
12.

Solution 

The general term is

 (  12   
  i

    ) (2b 2)12 2 i   ( 2   1 __ 
b

   ) i 5  (  12   
  i

    ) (2)12 2 i(b 2)12 2 i   ( 2   1 __ 
b

   ) i

​ ​ 5  (  12   
  i

    ) (2)12 2 ib 24 2 2ib2i(21)i 5  (  12   
  i

    ) (2)12 2 i b 24 2 3i(21)i 

24 2 3i 5 6 ⇒ i 5 6. So, the coefficient in question is  (   12        6   ) (2)6(21)6 5 59  136.

1 Use Pascal’s triangle to expand each binomial.
a) (x 1 2y)5 b) (a 2 b)4 c) (x 2 3)6

d) (2 2 x3)4 e) (x 2 3b)7 f )  ( 2n 1   1 __ 
n2   ) 

6

g)  (   3 __ x   22 √
__

 x   ) 
4

Exercise 4.6
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 2 Evaluate each expression.

a)  (   8     3   )  b)  (  18     5   )  2  (   18       13   )  c)  (   7     4   )   (   7     3   ) 

d)  (   5     0   )  1 ​( ​​5     1   )  1 ​( ​​5     2   )  1 ​( ​​5     3   )  1 ​( ​​5     4   )  1 ​( ​​5     5   )  

e)  (   6     0   )  2 ​( ​​6     1   )  1 ​( ​​6     2   )  2 ​( ​​6     3   )  1 ​( ​​6     4   )  2 ​( ​​6     5   )  1 ​( ​​6     6   )  

 3 Use the binomial theorem to expand each of the following.

a) (x 1 2y)7 b) (a 2 b)6 c) (x 2 3)5

d) (2 2 x3)6 e) (x 2 3b)7 f )  ( 2n 1   1 __ 
n2   ) 

6

g)  (   3 __ x   22 √
__

 x   ) 
4
 h)  ( 1 1  √

__
 5   ) 4 1  ( 1 2  √

__
 5   ) 4 

i)  (  √
__

 3   1 1 ) 8 2  (  √
__

 3   2 1 ) 8 j) (1 1 i )8, where i 2 5 21

k)  (  √
__

 2   2 i ) 6, where i 2 5 21

 4 Consider the expression  ( x 2   2 __ x   ) 
45

.

a) Find the first three terms of this expansion.

b) Find the constant term if it exists or justify why it does not exist.

c) Find the last three terms of the expansion.

d) Find the term containing x 3 if it exists or justify why it does not exist.

 5 Prove that  (  n   
k

   )  5  (   n      
n 2 k

  )  for all n, k  N and n > k.

 6 Prove that for any positive integer n,

  (  n   1   )  1  (  n   2   )  1 … 1  (   n       n 2 1  )  1  (  n   n  )  5 2n 2 1  Hint: 2n 5 (1 1 1)n

 7 Consider all n, k  N and n > k.

a) Verify that k! 5 k(k 2 1)!

b) Verify that (n 2 k 1 1)! 5 (n 2 k 1 1) (n 2 k)!

c) Justify the steps given in the proof of  (     n     r 2 1  )  1  (  n   r   )  5  (  n 1 1      r    )  in the 
examples.

 8 Find the value of the expression:

  (  6   0  )  (   1 __ 3   ) 
6
 1  (  6   1  )   (   1 __ 3   )  

5
  (   2 __ 3   )  1   (  6   2  )  (   1 __ 3   )  

4
   (   2 __ 3   )  

2
  1 … 1  (  6   6  )  (   2 __ 3   ) 

6

 9 Find the value of the expression:

  (  8   0  )  (   2 __ 5   ) 
8
 1  (  8   1  )  (   2 __ 5   ) 

7
  (   3 __ 5   )  1  (  8   2  )   (   2 __ 5   )  

6
   (   3 __ 5   )  

2
  1 … 1  (  8   8  )  (   3 __ 5   ) 

8

10 Find the value of the expression:

  (  n   0   )  (   1 __ 7   ) 
n
 1   (  n   1   )  (   1 __ 7   )  

n 2 1
  (   6 __ 7   )  1   (  n   2   )  (   1 __ 7   )  

n 2 2
   (   6 __ 7   )  

2
  1 … 1  (  n   n  )  (   6 __ 7   ) 

n

11 Find the term independent of x in the expansion of   ( x2 2   1 __ x   )  
6
 .

12 Find the term independent of x in the expansion of   ( 3x 2   2 __ x   )  
8
 .

13 Find the term independent of x in the expansion of   ( 2x 2   3 __ x3   )  
8
 .

14 Find the first three terms of the expansion of (1 1 x)10 and use them to find an 
approximation to 

a) 1.0110 b) 0.9910
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 4.7 Mathematical induction

Domino effect

In addition to playing games of strategy, another familiar activity using 
dominoes is to place them on edge in lines, then topple the first tile, which 
falls on and topples the second, which topples the third, etc., resulting in all 
of the tiles falling. Arrangements of millions of tiles have been made that 
have taken many minutes to fall. 

The Netherlands has hosted an annual domino toppling competition 
called Domino Day since 1986. The record, achieved in 2006, is 4 079 381 
dominoes.

Similar phenomena of chains of small events each causing similar 
events leading to an eventual grand result, by analogy, are called domino 
effects. The phenomenon also has some theoretical bearing to familiar 
applications like the amplifier, digital signals, or information processing.

15 Show that  (   n              r 2 1   )  1 2 (   n      r   )  1  (   n              r 1 1   )  5 ​( ​​n 1 2             r 1 1   )  and interpret your result on the 

 entries in Pascal’s triangle.

16 Express each repeating decimal as a fraction:

a)	 0. 
_

 7 	 b)	 0.3 
__

 45 	 c)	 3.21 
__

 29 

17 Find the coefficient of x 6 in the expansion of (2x 2 3)9.

18 Find the coefficient of x 3b 4 in (ax 1 b)7.

19 Find the constant term of  (   2 ___ 
 z 2

   2 z ) 
15

.

20 Expand (3n 2 2m)5.

21 Find the coefficient of r 10 in (4 1 3r 2)9.
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10 Complex Numbers

You have already met complex numbers in Chapters 1 and 3. This chapter 
will broaden your understanding to include trigonometric representation 
of complex numbers and some applications.

Solving a linear equation of the form

ax 1 b 5 0, with a  0

is a straightforward procedure if we are using the set of real numbers.  
The situation, as you already know, is different with quadratic equations. 
For example, as you have seen in Chapter 3, solving the quadratic equation 

Introduction

Assessment statements
1.5	 Complex	numbers:	the	number	i 5			√

___
	21		;	the	term’s	real	part,	

imaginary	part,	conjugate,	modulus	and	argument.	
	 Cartesian	form	z	5	a	1 ib.	

Sums,	products	and	quotients	of	complex	numbers.

1.6	 Modulus–argument	(polar)	form	z	5 r	(cosu	1	i	sinu)	=	rcis(u)	=	reiu.	
	 The	complex	plane.
1.7	 De	Moivre’s	theorem.	
	 Powers	and	roots	of	a	complex	number.
1.8	 Conjugate	roots	of	polynomial	equations	with	real	coefficients.

Fractals can be generated using 
complex numbers.
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x 2 1 1 5 0 over the set of real numbers is not possible. The square of any 
real number has to be non-negative, i.e.

(x 2 > 0 ⇔ x2 1 1 > 1) ⇒ x 2 1 1 > 0 for any choice of a real number x.

This means that x 2 1 1 5 0 is impossible for every real number x. This 
forces us to introduce a new set where such a solution is possible.

 10.1 Complex numbers, sums, products 
and quotients

As you have seen in the introduction, the development of complex 
numbers had its origin in the search for methods of solving polynomial 
equations. The quadratic formula

x 5   2b ___ 
2a

   6   
  √

________

 b 2 2 4ac  
 _________ 

2a
   

had been used earlier than the 16th century to solve quadratic equations – 
in more primitive notations, of course. However, mathematicians stopped 
short of using it for cases where b 2 2 4ac was negative. The use of the 
formula in cases where b 2 2 4ac is negative depends on two principles (in 

The situation with finding a solution to x2 1 1 5 0 is analogous to the following 
scenario: For a child in the first or second grade, a question such as 5 1 ? 5 9 is 
manageable. However, a question such as 5 1 ? 5 2 is impossible because the 
student’s knowledge is restricted to the set of positive integers.

However, at a later stage when the same student is faced with the same question, 
he/she can solve it because their scope has been extended to include negative 
numbers too.

Also, at early stages an equation such as

x2 5 5

cannot be solved till the student’s knowledge of sets is extended to include irrational 
numbers where he/she can recognize numbers such as x 5 6  √

__
 5  .

The situation is much the same for x2 1 1 5 0. We extend our number system to 
include numbers such as   √

___
 21  ; i.e. a number whose square is 21.

Numbers such as   √
___

 21   are 
not intuitive and many 
mathematicians in the past 
resisted their introduction, so 
they are called imaginary 
numbers.

Thanks to Euler’s (1707–1783) 
seminal work on imaginary 
numbers, they now feature 
prominently in the number 
system. Euler skilfully employed 
them to obtain many 
interesting results. Later, Gauss 
(1777–1855) represented them 
as points in the plane and 
renamed them as complex 
numbers, using them to 
obtain various significant 

results in number theory.

Electronic components like 
capacitors are used in AC circuits. 
Their effects are represented using 
complex numbers.
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addition to the other principles inherent in the set of real numbers, such as 
associativity and commutativity of multiplication).

1.   √
___

 21      √
___

 21   5 21

2.   √
___

 2k   5   √
__

 k      √
___

 21   for any real number k . 0

Example 1 

Multiply   √
____

 236      √
____

 249  .

Solution

First we simplify each square root using rule 2.

  √
____

 236   5   √
___

 36      √
___

 21   5 6    √
___

 21  

  √
____

 249   5   √
___

 49      √
___

 21   5 7    √
___

 21  

And hence using rule 1 with the other obvious rules:

  √
____

 236      √
____

 249   5 6    √
___

 21    7    √
___

 21   5 42    √
___

 21      √
___

 21   5 242

To deal with the quadratic formula expressions that consist of 
combinations of real numbers and square roots of negative numbers, we 
can apply the rules of binomials to numbers of the form

a 1 b    √
___

 21  

where a and b are real numbers. For example, to add 5 1 7  √
___

 21   to 2 2 3  √
___

 21   
we combine ‘like’ terms as we do in polynomials:

(5 1 7  √
___

 21  ) 1 (2 2 3  √
___

 21  ) 5 5 1 2 1 7  √
___

 21   2 3  √
___

 21  

 5 (5 1 2) 1 (7 2 3)  √
___

 21   5 7 1 4  √
___

 21  

Similarly, to multiply these numbers we use the binomial multiplication 
procedures:

(5 1 7  √
___

 21  )  (2 2 3  √
___

 21  ) 5  5  2 1 (7  √
___

 21  )  (23  √
___

 21  ) 1 5  (23  √
___

 21  ) 
1 (7  √

___
 21  )  2

 5 10 2 21  (  √
___

 21  )2 2 15    √
___

 21   1 14    √
___

 21  

 5  10 2 21  (21) 1 (215 1 14)  √
___

 21   

 5 31 2   √
___

 21  

Euler introduced the symbol i for   √
___

 21  .

A pure imaginary number is a number of the form ki, where k is a real number and i, 
the imaginary unit, is defined by i 2 5 21.

Note: In some cases, especially in engineering sciences, the number i is sometimes 
denoted as j.

Note: With this definition of i, a few interesting results are immediately 
apparent. For example,

i  3 5 i  2  i 5 21  i 5 2i, and

i  4 5 i  2  i  2 5 (21)  (21) 5 1, and so

i  5 5 i  4  i 5 1  i 5 i, and also

i  6 5 i  4  i  2 5 i  2 5 21; i  7 5 2i, and finally i  8 5 1.
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This leads you to be able to evaluate any positive integer power of i using 
the following property:

i  4n 1 k 5 i  k, k 5 0, 1, 2, 3.

So, for example i  2122 5 i  2120 1 2 5 i 2 5 21.

Example 2�

Simplify

a)   √
____

 236   1   √
____

 249   b)   √
____

 236      √
____

 249  

Solution

a)   √
____

 236   1   √
____

 249   5   √
___

 36     √
___

 21   1   √
___

 49     √
___

 21   
 5 6i 1 7i 5 13i

b)   √
____

 236      √
____

 249   5 6i  7i 5 42i  2

  5 42(21) 5 242

Gauss introduced the idea of complex numbers by giving them the 
following definition.

A complex number is a number that can be written in the form a 1 bi where a and 
b are real numbers and i  2 5 21. a is called the real part of the number and b is the 
imaginary part.

Notation

It is customary to denote complex numbers with the variable z.

z 5 5 1 7i is the complex number with real part 5 and imaginary part 7 
and z 5 2 2 3i has 2 as real part and 23 as imaginary.

It is usual to write Re(z) for the real part of z and Im(z) for the imaginary 
part. So, Re(2 1 3i ) 5 2 and Im(2 1 3i ) 5 3.

Note that both the real and imaginary parts are real numbers!

Algebraic structure of complex numbers
Gauss’ definition of the complex numbers triggers the following 
understanding of the set of complex numbers as an extension to our 
number sets in algebra.

The set of complex numbers C is the set of ordered pairs of real numbers 
C 5 {z 5 (x, y): x, y  }, with the following additional structure:

Equality

Two complex numbers z1 5 (x1, y1) and z2 5 (x2, y2) are equal if their 
corresponding components are equal: (x1, y1) 5 (x2, y2) if x1 5 x2 and 
y1 5 y2. That is, two complex numbers are equal if and only if their real parts 
are equal and their imaginary parts are equal.

We do not define i 5   √
___

 21   for 
a reason. It is the convention 
in mathematics that when we 
write   √

__
 9   then we mean the 

non-negative square root of 9, 
namely 3. We do not mean 23! 
i does not belong to this 
category since we cannot say 
that i is the positive square root 
of 21, i.e. i . 0. If we do, then 
21 5 i  i . 0, which is false, 
and if we say i , 0, then 
2i . 0, and 21 5 2i  2i . 
0, which is also false. Actually 
2i is also a square root of 21 
because 2i  2i 5 i  2 5 21.

With this in mind, we can use 
a ‘convention’ which calls i the 
principal square root of 21 
and write i 5   √

___
 21  .

A GDC can be set up to 
do basic complex number 
operations. For example, if you 
have a TI-84 Plus, the set up is 
as follows.

SCI

REAL
HORIZ G-T

re^θi
SIMUL

DOT
PAR POL SEQ

DEGREE
0 1 2 3 4 5 6 7 8 9

ENG
FLOAT
RADIAN
FUNC
CONNECTED
SEQUENTIAL

a+bi
FULL
SET CLOCK12/01/08 6:39AM
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This is equivalent to saying: a 1 bi 5 c 1 di ⇔ a 5 c and b 5 d.

For example, if 2 2 ( y 2 2)i 5 x 1 3 1 5i, then x must be 21 and y must 
be 23. Explain why.

Addition and subtraction for complex numbers are defined as follows:

Addition

(x1, y1) 1 (x2, y2) 5 (x1 1 x2, y2 1 y2)

This is equivalent to saying: (a 1 bi) 1 (c 1 di) 5 (a 1 c) 1 (b 1 d)i.

Multiplication

(x1, y1)(x2, y2) 5 (x1x2 2 y1y2, x1y2 1 x2y1)

This is equivalent to using the binomial multiplication on (a 1 bi)(c 1 di):

(a 1 bi)  (c 1 di) 5 ac 1 bdi 2 1 adi 1 bci 5 ac 2 bd 1 (ad 1 bc)i

Addition and multiplication of complex numbers inherit most of the 
properties of addition and multiplication of real numbers:

z 1 w 5 w 1 z and zw 5 wz (Commutativity)

z 1 (u 1 v) 5 (z 1 u) 1 v and z(uv) 5 (zu)v  (Associativity)

z (u 1 v) 5 zu 1 zv (Distributive property)

A number of complex numbers take up unique positions. For example, the 
number (0, 0) has the properties of 0:

(x, y) 1 (0, 0) 5 (x, y) and (x, y)(0, 0) 5 (0, 0).

It is therefore normal to identify it with 0. The symbol is exactly the same 
symbol used to identify the ‘real’ 0. So, the real and complex zeros are the 
same number.

Another complex number of significance is (1, 0). This number plays an 
important role in multiplication that stems from the following property:

(x, y) (1, 0) 5 (x  1 2 y  0, x  0 1 y  1) 5 (x, y)

An interesting application of the way equality works is in finding the square roots of 
complex numbers without a need for the trigonometric forms developed later in the 
chapter.

Find the square root(s) of z 5 5 1 12i. Let the square root of z be x 1 yi, then 

(x 1 yi )2 5 5 1 12i ⇒ x2 2 y2 1 2xyi 5 5 1 12i ⇒ x2 2 y2 5 5 and 

2xy 5 12 ⇒ xy 5 6 ⇒ y 5   6 __ x  , and when we substitute this value in x2 2 y2 5 5, 

we have x2 2   (   6 __ x   )  
2
  5 5. This simplifies to x 4 2 5x2 2 36 5 0 which yields x2 5 24 

or x2 5 9, ⇒ x 5 63. This leads to x 5 62i, that is, the two square roots of 5 1 12i 

are 3 1 2i or 23 2 2i. (3+2i)2

(-3–2i)2
5+12i

5+12i
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For complex numbers, (1, 0) behaves like the identity for multiplication for 
real numbers. Again, it is normal to write (1, 0) 5 1.

The third number of significance is (0, 1). It has the notable characteristic 
of having a negative square, i.e.

(0, 1)(0, 1) 5 (0  0 2 1  1, 0  1 1 1  0) 5 (21, 0)

Using the definition above, (0, 1) 5 0 1 1i 5 i. So, the last result should be 
no surprise to us since we know that

i   i 5 21 5 (21, 0).

Since (x, y) represents the complex number x 1 yi, then every real 
number x can be written as x 1 0i 5 (x, 0). The set of real numbers is 
therefore a subset of the set of complex numbers. They are the complex 
numbers whose imaginary part is 0. Similarly, pure imaginary numbers are 
of the form 0 1 yi 5 (0, y). They are the complex numbers whose real part 
is 0.

Notation

So far, we have learned how to represent a complex number in two forms:

(x, y) and x 1 yi.

Now, from the properties above

(x, y) 5 (x, 0) 1 (0, y) 5 (x, 0) 1 (y, 0)(0, 1) 

(Check the truth of this equation.)

This last equation justifies why we can write (x, y) 5 x 1 yi.

Example 3�

Simplify each expression.

a) (4 2 5i) 1 (7 1 8i)

b) (4 2 5i) 2 (7 1 8i)

c) (4 2 5i)(7 1 8i)

Solution

a) (4 2 5i) 1 (7 1 8i) 5 (4 1 7) 1 (25 1 8)i 5 11 1 3i

b) (4 2 5i) 2 (7 1 8i) 5 (4 2 7) 1 (25 2 8)i 5 23 2 13i

c) (4 2 5i)(7 1 8i) 5 (4  7 2 (25)  8) 1 (4  8 1 (25)  7)i 5 68 2 3i

Division

Multiplication can be used to perform division of complex numbers.

The division of two complex numbers,   a 1 bi ______ 
c 1 di

  , involves finding a complex 

number (x 1 yi) satisfying   a 1 bi ______ 
c 1 di

   5 x 1 yi; hence, it is sufficient to find 

the unknowns x and y.

(4–5i)

Ans Frac
-5 8–1 2i

(4–5i) (7+8i)

-.625–.5i
(8i)

68–3i
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Example 4�

Find the quotient   2 1 3i ______ 
1 1 2i

   .

Solution

Let   2 1 3i ______ 
1 1 2i

   5 x 1 iy. Hence, using multiplication and the equality of 

complex numbers, 

2 1 3i 5 (1 1 2i)(x 1 iy) ⇔ 2 1 3i 5 x 2 2y 1 i(2x 1y)

⇔ { 2 5 x 2 2y
⇒ x 5   8 __ 5  , y 5   1 __ 5  

3 5 2x 1 y

Thus,   2 1 3i ______ 
1 1 2i

   5   8 __ 5   2   1 __ 5  i.

(2+3i)

Ans Frac
8 5–1 5i

(1+2i)
1.6-.2i

Now, in general,   a 1 bi ______ 
c 1 di

   5 x 1 yi ⇔ a 1 bi 5 (x 1 yi)(c 1 di).

With the multiplication as described above:

a 1 bi 5 (cx 2 dy) 1 (dx 1 cy)i

Again by applying the equality of complex numbers property above we get 
a system of two equations that can be solved.

{ cx 2 dy 5 a
⇒ x 5   ac 1 bd _______ 

c  2 1 d  2
  ; y 5   bc 2 ad _______ 

c  2 1 d  2
  

dx 1 cy 5 b

The denominator c  2 1 d  2 resulted from multiplying c 1 di by c 2 di , 
which is its conjugate.

Conjugate
With every complex number (a 1 bi) we associate another complex 
number (a 2 bi) which is called its conjugate. The conjugate of number z 
is most often denoted with a bar over it, sometimes with an asterisk to the 
right of it, occasionally with an apostrophe and even less often with the 
plain symbol Conj as in

 
_
 z  5 z * 5 z9 5 Conj(z).

In this book, we will use z  * for the conjugate.

The importance of the conjugate stems from the following property

(a 1 bi )(a 2 bi ) 5 a2 2 b  2i  2 5 a2 1 b  2

which is a non-negative real number. So the product of a complex number 
and its conjugate is always a real number.

Although the conjugate 
notation z * will be used in the 
book, in your own work you 
can use any notation you feel 
comfortable with. You just 
need to understand that the IB 
questions use this one.
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Example 5�

Find the conjugate of z and verify the property mentioned above.

a) z 5 2 1 3i

b) z 5 5i

c) z 5 11

Solution

a) z  * 5 2 2 3i, and (2 1 3i )(2 2 3i) 5 4 2 9i  2 5 4 1 9 5 13.

b) z  * 5 25i, and (5i )(25i ) 5 25i2 5 (25)(21) 5 5.

c) z  * 5 11, and 11  11 5 121.

So, the method used in dividing two complex numbers can be achieved by 
multiplying the quotient by a fraction whose numerator and denominator are the 
conjugate c 2 di.

  a 1 bi _____ 
c 1 di

   5   a 1 bi _____ 
c 1 di

      c 2 di _____ 
c 2 di

   5   (a 1 bi)(c 2 di)
  __________ 

c  2 1 d  2
   5   ac 1 bd ______ 

c  2 1 d  2
   1   bc 2 ad ______ 

c  2 1 d  2
   i

Example 6�

Find each quotient and write your answer in standard form.

a)   4 2 5i ______ 
7 1 8i

  

b)   4 2 5i ______ 
8i

   

c)   4 2 5i ______ 7  

Solution

a)   4 2 5i ______ 
7 1 8i

   5   4 2 5i ______ 
7 1 8i

      7 2 8i ______ 
7 2 8i

   5   
28 2 40 1 (232 2 35)i

  ____________________  
49 1 64

   5 2   12 ___ 
113

   2   67 ___ 
113

  i

b)   4 2 5i ______ 
8i

    5   4 2 5i ______ 
8i

       28i ____ 
28i

   5   232i 2 40 _________ 
64

   5 2   5 __ 
8

   2   1 __ 
2

  i

c)   4 2 5i ______ 7   5   4 __ 7   2   5 __ 7  i

Ans Frac

(4–5i) (7+8i) (4–5i) (8i)
-.1061946903–.5… -.625–.5i

-5 8–1 2i-12 113–67 113i
Ans Frac

Example 7�

Solve the system of equations and express your answer in Cartesian form.

(1 1 i )z1 2 iz2 5 23

2z1 1 (1 2 i )z2 5 3 2 3i



436

Complex Numbers10

Solution

Multiply the first equation by 2, and the second equation by (1 1 i).

 2(1 1 i )z1 2 2iz2 5 26  (1)

 2(1 1 i )z1 1 (1 1 i)(1 2 i )z2 5 (1 1 i )(3 2 3i )

 2(1 1 i )z1 1 2z2 5 6  (2)

By subtracting (2) from (1), we get

 (22 2 2i )z2 5 212

And hence  z2  5   212 _______ 
22 2 2i

   5 3 2 3i

  z1 5   
23 1 i(3 2 3i)

  _____________ 
1 1 i

    5   3 __ 
2

   1   3 __ 
2i

  

Properties of conjugates

Here is a theorem that lists some of the important properties of conjugates. 
In the next section, we will add a few more to the list.

Theorem

Let z, z1 and z2 be complex numbers, then

(1) (z *) * 5 z

(2) z * 5 z if and only if z is real.

(3) (z1 1 z2) * 5 z1 * 1 z2 * The conjugate of the sum is the sum of conjugates.

(4) (2z) * 5 2z  *

(5) (z1  z2) * 5 z1 *  z2 *   The conjugate of the product is the product of conjugates. 

(6) (z21) * 5 (z  *)21, if z  0.

Proof

(1) and (2) are obvious. For (1), ((a 1 bi) *) * 5 (a 2 bi) * 5 a 1 bi, and 
for (2), a 2 bi 5 a 1 bi ⇒ 2bi 5 0 ⇒ b 5 0.

(3) is proved by straightforward calculation:

 Let z1 5 x1 1 iy1 and z2 5 x2 1 iy2, then

 (z1 1 z2) * 5 ((x1 1 iy1) 1 (x2 1 iy2)) * 5 ((x1 1 x2) 1 i (y1 1 y2)) *
  5 (x1 1 x2) 2 i (y1 1 y2) 5 (x1 2 iy1) 1 (x2 2 iy2) 5 z1 * 1 z2 *.

(4) can now be proved using the above results:

 (z 1 (2z)) * 5 0 * 5 0

but,  (z 1 (2z)) * 5 0 * 5 z * 1 (2z) *, 
so z * 1 (2z) * 5 0, and (2z) * 5 2z *.

Also (5) is proved by straightforward calculation:

 (z1  z2) * 5 ((x1 1 iy1)  (x2 1 iy2)) * 5 ((x1x2 2 y1y2) 1 i (y1x2 1 x1y2)) *

  5 (x1x2 2 y1y2) 2 i (y1x2 1 x1y2)

  5 (x1 2 iy1)  (x2 2 iy2) 5 z1 *  z2 *

The product can be extended  
to powers of complex numbers, 
i.e.  
(z2)* 5 (z  z)* 5 z*  z* 5 (z*)2. 
This result can be generalized 
for any non-negative integer 
power n, i.e. (z n)* 5 (z *)n and 
can be proved by mathematical 
induction.

The basis case, when n 5 0, is 
obviously true: 
(z 0)* 5 1 5 (z *)0.

Now assume (z k)* 5 (z *) k.
(z  k 1 1)* 5 (z kz)* 5 (z k)*z* 
5 (z *) kz * (using the product 
rule).

Therefore, (z  k 1 1)* 5 (z *) kz* 
5 (z *)k 1 1.

So, since if the statement is  
true for n 5 k, it is also true for 
n 5 k 1 1, then by the principle 
of mathematical induction it is 
true for all n > 0.
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And finally, (6):

(z(z21)) * 5 1 * 5 1

but, (z(z21)) * 5 z *(z21) *, so z  *(z21) * 5 1, 

and (z21) * 5   1 __ 
z *

   5 (z  *)21.

Conjugate zeros of polynomials
In Chapter 3, you used the following result without proof.

If c is a root of a polynomial equation with real coefficients, then c * is also a 
root.

Theorem: If c is a root of a polynomial equation with real coefficients, 
then c * is also a root of the equation.

We give the proof for n 5 3, but the method is general.

P(x) 5 ax 3 1 bx 2 1 dx 1 e

Since c is a root of P(x) 5 0, we have

ac 3 1 bc 2 1 dc 1 e 5 0

⇒ (ac 3 1 bc 2 1 dc 1 e) *5 0   Since 0* 5 0.

⇒ (ac 3) * 1 (bc 2) * 1 (dc) * 1 e * 5 0 Sum of conjugates theorem.

⇒ a(c  *)3 1 b(c *)2 1 d(c  *) 1 e 5 0 Result of product conjugate.

⇒ (c  *) is a root of P(x) 5 0.

Example 8�

1 1 2i is a zero of the polynomial P(x) 5 x 3 2 5x 2 1 11x 2 15. Find all 
other zeros.

Solution

Since the polynomial has real coefficients, then 1 2 2i is also a zero. Hence, 
using the factor theorem, P(x) 5 (x 2 (1 1 2i))(x 2 (1 2 2i))(x 2 c), 
where c is a real number to be found.

Now, P(x) 5 (x2 2 2x 1 5)(x 2 c). c can either be found by division or by 
factoring by trial and error. In either case, c 5 3.

Example 91�

1 1 2i is a zero of the polynomial
P(x) 5 x 3 1 (i 2 2)x 2 1 (2i 1 5)x 1 8 1 i.
Find all other zeros.

1 Not included in present IB syllabus.
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Solution

Since the polynomial does not have real coefficients, then 1 2 2i is not 
necessarily also a zero. To find the other zeros, we can perform synthetic 
substitution

1 1 2i 1 i 2 2 2i 1 5 8 1 i

1 1 2i 27 1 i 28 2 i
1 21 1 3i 22 1 3i 0

This shows that P(x) 5 (x 2 1 2 2i)(x 2 1 (21 1 3i)x 2 2 1 3i). The 
second factor can be factored into (x 1 1)(x 2 2 1 3i) giving us the other 
two zeros as 21 and 2 2 3i.

Note: x2 1 (21 1 3i)x 2 2 1 3i 5 0 can be solved using the quadratic 
formula.

x 5   
2b 6   √

_______

 b2 2 4ac  
  ______________ 

2a
    5   

1 2 3i 6   √
_____________________

  (21 1 3i)2 2 4(22 1 3i)  
   ______________________________  

2
  

5   
1 2 3i 6   √

________________

  28 2 6i 1 8 2 12i  
   _________________________  

2
   5   

1 2 3i 6   √
_____

 218i  
  ______________ 

2
  

To find   √
_____

 218i   we let (a 1 bi)2 5 218i ⇒ a2 2 b2 1 2abi 5 218i, then 
equating the real parts and imaginary parts to each other: a2 2 b2 5 0 

and 2ab 5 218 will yield   √
_____

 218i   5 63 7 3i, and hence 

x 5   
1 2 3i 6   √

_____

 218i  
  ______________ 

2
   2   

1 2 3i 6 (63 7 3i)
  ________________ 

2
   

which will yield x 5 21 or x 5 2 2 3i.

Exercise 10.1

Express each of the following numbers in the form a 1 bi.

 1 5 1   √
___

 24    2 7 2   √
___

 27    3 26

 4 2  √
___

 49    5   √
____

 281    6 2  √
____

   225 ____ 16    

Perform the following operations and express your answer in the form a 1 bi.

 7 (23 1 4i ) 1 (2 2 5i )  8 (23 1 4i ) 2 (2 2 5i )

 9 (23 1 4i )(2 2 5i ) 10 3i 2 (2 2 4i )

11 (2 2 7i )(3 1 4i ) 12 (1 1 i )(2 2 3i )

13   3 1 2i ______ 2 1 5i
    14   2 2 i ______ 3 1 2i

  

15  (   2 __ 3   2   1 __ 2   i )   1  (   1 __ 3   1   1 __ 2   i )    16  (   2 __ 3   2   1 __ 2   i  )  (   2 __ 3   1   1 __ 2   i )  

17  (   2 __ 3   2   1 __ 2   i  )  4  (   1 __ 3   1   1 __ 2   i )    18 (2 1 i )(3 2 2i )

19   1 __ 
i
   (3 2 7i ) 20 (2 1 5i ) 2 (22 2 5i )

21   13 _______ 5 2 12i
    22   12i ______ 3 1 4i
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23 3i ( 3 2   2 __ 3  i )    24 (3 1 5i )(6 2 10i )

25   39 2 52i _______ 24 1 10i
    26 (7 2 4i )21

27 (5 2 12i )21 28   3 ______ 3 2 4i
   1   2 ______ 6 1 8i

  

29   
(7 1 8i )(2 2 5i )

  _____________ 5 2 12i
     30   5 2   √

_____
 2144   __________ 

3 1   √
____

 216  
  

31 Let z 5 a 1 bi. Find a and b if (2 1 3i )z 5 7 1 i.

32 (2 1 yi )(x 1 i ) 5 1 13i, where x and y are real numbers. Solve for x and y.

33 a) Evaluate (1 1 i  √
__

 3   )3.

b) Prove that (1 1 i  √
__

 3  )6n 5 82n, where n  Z1.

c) Hence, find (1 1 i  √
__

 3  )48.

34 a) Evaluate (2  √
__

 2   1 i  √
__

 2  )2.

b) Prove that (2  √
__

 2   1 i  √
__

 2  )4k 5 (216)k, where k  Z1.

c) Hence, find (2  √
__

 2   1 i  √
__

 2  )46.

35 If z is a complex number such that |z 1 4i | 5 2|z 1 i |, find the value of |z |. 

 ( |z| 5   √
______

  x 2  +  y 2    where z = x + iy.)

36 Find the complex number z and write it in the form a 1 bi if z 5 3 1   2i _______ 
2 2 i  √

__
 2  
  .

37 Find the values of the two real numbers x and y such that (x 1 iy)(4 2 7i ) 5 3 1 2i.

38 Find the complex number z and write it in the form a 1 bi if i(z 1 1) 5 3z 2 2.

39 Find the complex number z and write it in the form a 1 bi if   2 2 i ______ 1 1 2i
     √

_
 z   5 2 2 3i.

40 Find the values of the two real numbers x and y such that (x 1 iy)2 5 3 2 4i.

41 a) Find the values of the two real numbers x and y such that (x 1 iy)2 5 2 8 1 6i.

b) Hence, solve the following equation

z2 1 (1 2 i )z 1 2 2 2i 5 0.

42 If z  C, find all solutions to the equation z3 2 27i 5 0.

43 Given that z 5   1 _ 2   1 2i is a zero of the polynomial f (x) 5 4x3 2 16x2 1 29x 2 51, 
find the other zeros.

44 Find a polynomial function with integer coefficients and lowest possible degree 
that has   1 _ 2  , 21 and 3 1 i  √

__
 2   as zeros.

45 Find a polynomial function with integer coefficients and lowest possible degree 
that has 22, 22 and 1 1 i  √

__
 3   as zeros.

46 Given that z 5 5 1 2i is a zero of the polynomial f (x) 5 x3 2 7x2 2 x 1 87, find 
the other zeros.

47 Given that z 5 1 2 i  √
__

 3   is a zero of the polynomial f (x) 5 3x3 2 4x2 1 8x 1 8, 
find the other zeros.

48 Let z  C. If   z __ 
z*

   5 a 1 bi, show that |a 1 bi | 5 1.
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 10.2 The complex plane

Our definition of complex numbers as ordered pairs of real numbers 
enables us to look at them from a different perspective. Every ordered pair 
(x, y) determines a unique complex number x 1 yi, and vice versa. This 
correspondence is embodied in the geometric representation of complex 
numbers. Looking at complex numbers as points in the plane equipped 
with additional structure changes the plane into what we call complex 
plane, or Gauss plane, or Argand plane (diagram). The complex plane has 
two axes, the horizontal axis is called the real axis, and the vertical axis is 
the imaginary axis. Every complex number z 5 x 1 yi is represented by a 
point (x, y) in the plane. The real part is measured along the real axis and 
the imaginary part along the imaginary axis.

�4i

�3i

�2i

�i

i

0

2i

3i

4i

5i

�2�3�4�5 �1 1

imaginary axis

�5 � 2i

3 � 4i

real axis2 3 4 5

The diagram above illustrates how the two complex numbers 3 1 4i and 
25 1 2i are plotted in the complex plane.

imaginary axis

0 Real part x

z � x � yi

Im
ag

in
ar

y 
pa

rt
 y

real axis

49 Given that z 5 (k 1 i )4 where k is a real number, find all values of k such that

a) z is a real number

b) z is purely imaginary.

50 Solve the system of equations. 51 Solve the system of equations.

iz1 1 2z2 5 3 2 i    iz1 2 (1 1 i )z2 5 3
2z1 1 (2 1 i )z2 5 7 1 2i  (2 1 i )z1 1 iz2 5 4
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Chapter 3
Exercise 3.1
  1 

	 
28; 28

	
  2  0;	33

  3  29;	2375	   4  0;	
	  
23c + 6

  5  	 k = 2 	   6  	 k = 2
  7  a)	 216,	2,	2,	24,	24,	14,	62
	 b)	 3
	 c)	

	 	

x

y

�4

�5

�3

�2

�1

4

5

3

2

1

�1�2�3 1 2 30

  8  a)	 52,	5,	0,	1,	24,	23,	40
	 b)	 4
	 c)	

	 	

x

y

�4

�5

�6

�7

�3

�2

�1

3

2

1

�1�2�3 1 2 30

  9 
	 
a = 12

11
10 

	  
b = 2 3

11  a)	 (i)	
	
,( ) 	

	 	 (ii)	
	
,( )

	 	 (iii)	
	
,( ) 	

	 	 (iv)	
	
,( )

	 	 (v)	
	
,( ) 	

	 	 (vi)	
	
,( )

	 	 (vii)	
	
,( ) 	

	 	 (viii)	
	
,( )

	 b)	 	If	leading	term	has	positive	coefficient	and	even	
exponent,	then	

	
,( ) .

	 	 	If	leading	term	has	negative	coefficient	and	even	
exponent,	then	

	
,( ) .

	 	 	If	leading	term	has	positive	coefficient	and	odd	exponent,	
then	

	
,( ) .

	 	 	If	leading	term	has	negative	coefficient	and	odd	
exponent,	then	

	
,( ) .

Exercise 3.2
  1  a)	

	  
f x( ) = x 25( )2 + 7

	 b)	 	Horizontal	translation	5	units	right;	vertical	translation	7	
units	up.

	 c)	 Minimum:	
	
5, 7( )

  2  a)	
	  
f x( ) = x + 3( )2

21
	 b)	 	Horizontal	translation	3	units	left;	vertical	translation	1	

unit	down.
	 c)	 Minimum:	

	 
23,21( )

  3  a)	
	  
f x( ) = 22 x + 1( )2 + 12

	 b)	 	Horizontal	translation	1	unit	left;	reflection	over	x-axis;	
vertical	stretch	by	factor	2;	vertical	translation	12	units	up.

	 c)	 Maximum:	
	 
21,12( )

  4  a)	
	  
f x( ) = 4 x 2 1

2( )2

+ 8

	 b)	 	Horizontal	translation	
	

1
2 	unit	right;	vertical	stretch	by	

factor	4;	vertical	translation	8	units	up.

	 c)	 Maximum:	
	

1
2

, 8( )
  5  a)	

	 
f x( ) = 1

2
x + 7( )2 + 3

2
	 b)	 	Horizontal	translation	7	units	left;	vertical	shrink	by	

factor	
	

1
2 ;	vertical	translation	

	

3
2 	units	up.

	 c)	 Minimum:	
	 
27, 3

2( )
  6 

	  
x = 2, x = 24

	
  7 

	  
x = 5, x = 22

  8 
	 
x = 3

2
, x = 0

	
  9 

	  
x = 6, x = 21

10  	 x = 3 	 11 
	  
x = 1

3
, x = 24

12 
	 
x = 3, x = 2

	
13 

	 
x = 2, x = 1

4
14  	  x = 22 ± 7 	 15 

	  
x = 5, x = 21

16  No	real	solution	 17  	  x = 24 ± 13

18 
	  
x = 2, x = 24

	
19 

	 
x = 2 ± 22

2
20  a)	 	 x = 2 ± 5
	 b)	 Axis	of	symmetry:		 x = 2 	
	 c)	 Minimum	value	of	f	is	

	 
25

21  Two	real	solutions	 22  No	real	solutions
23  Two	real	solutions	 24  No	real	solutions
25 

	 
p = ± 2 2

	
26  	 k < 4

27 
	  
k < 21, k > 1

	
28 

	  
m < 23, m > 3

29  	 k > 12
30  x	2	2	2	x 2	⇒ 2(x 2	2	x	+	2)	⇒	2	( x 2	2	x	+			1	__	4			)		2			7	__	4			

	 ⇒	2		( x	2			1	__	
2

			)		
2
		2				7	__	4			<	2			7	__	4			for	all	x	

31 
	  
y = 22x 2 + 6x + 8

	
32 

	  
y = x 2 2 7

2
x 2 1

2
33 

	  
21 < k < 15

	
34  	  m < 22 10		or		m > 2 10

35 
	  
f x( ) = 3x 2 + 5x 2 2

	
36 

	 
f 2( ) = 8

37  	 x < 1		or		x > 3

38 
	  
∆ = 2 2t( )2

2 4 2( ) t 2 + 3( ) > 0 ⇒ 27t 2 2 4t 2 20 > 0 ;	
because	

	 
∆

1
= 2544 	for		  27t 2 2 4t 2 20 	and	leading	

coefficient	is	negative,	then	graph	of	
	  
y = 27t 2 2 4t 2 20 	is	a	

parabola	opening	down	and	always	below	x-axis;	hence,	 ∆ 	
for	original	equation	is	always	negative;	thus,	no	real	roots

39 

	  

x =
2 2a2 21( ) ± 2a2 21( )2

2 4a a( )
2a

= a2 + 1 ± a4 2 2a2 + 1
2a

=
a2 + 1 ± a2 21( )2

2a
=

a2 + 1 ± a2 21( )
2a

⇒ x = 2a2

2a

= a		or		x = 2
2a

= 1
a
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Answers

40  a)	 sum	5	23,	product	5	2		5	__	
2

			

	 b)	 sum	5	23,	product	5	21

	 c)	 sum	5	0,	product	5	2		3	__	
2

			

	 d)	 sum	5	a,	product	5	22a

	 e)	 sum	5	6,	product	5	24	

	 f)	 sum	5			1	__	
3

		,	product	5	2		2	__	
3

			

41  4x	2	1	5x	1	4	5	0	

42  a)	 		1	__	
9

			 	 b)					1	__	
12

																													c)		​​55	__​27	​	
	 		

43	 a)	 22	and	26	 b)	 k	5	12

44	 a)	 2		1	__	4			 	 b)	 4x	2	1	x	1	1	5	0

45	 a)	 x	2	2	19x	1	25	5	0	 b)	 25x	2	1	72x	2	5	5	0

Exercise 3.3

  1 
	  
3x 2 + 5x 25 = x + 3( ) 3x 2 4( ) + 7

  2 
	  
3x 4 28x 3 + 9x + 5 = x 2 2( ) 3x 3 2 2x 2 2 4x + 1( ) + 7

  3 
	  
x 3 25x 2 + 3x 27 = x 2 4( ) x 2 2 x 21( )211

  4 
	  
9x 3 + 12x 2 25x + 1 = 3x 21( ) 3x 2 + 5x( ) + 1

  5 
	  
x 5 + x 4 28x 3 + x + 2 = x 2 + x 27( ) x 3 2 x + 1( ) + 27x + 9( )

  6 
	  

x 27( ) x 21( ) 2x 21( )	   7 
	  

x 2 2( ) 2x + 1( ) 3x + 2( )
  8 

	  
x 2 2( )2

x + 4( ) 3x + 2( ) 	
  9 

	  
Q x( ) = x 2 2, R = 22

10 
	  
Q x( ) = x 2 + 2, R = 23

	
11 

	 
Q x( ) = 3, R x( ) = 20x + 5

12 
	  
Q x( ) = x 4 + x 3 + 4x 2 + 4x + 4, R = 22

13 
	 
P 2( ) = 5

	
14 

	  
P 21( ) = 217

15 
	  
P 27( ) = 2483

	
16 

	 
P 1

4( ) = 49
64

17  	  x = 2 + i 		or		x = 2 2i 	 18 
	  
x = 1 + 5

2
		or		x = 12 5

2
19 

	  
k = 1 − x 3		or		k = 2 1 − x 3

	
20 

	 
a = 5, b = 12

21  	  x
3 23x 2 26x + 8	 22  	  x

4 23x 3 27x 2 + 15x + 18
23  	  x

3 26x 2 + 12x 28	 24  	  x
3 2 x 2 + 2

25  	  x
4 + 2x 3 + x 2 + 18x 272 	 26  	  x

4 28x 3 + 27x 2 250x + 50
27  	 x = 2 + 3i, 		x = 3 	
28  a)	

	  
a = 21, b = 22 	 b)	 	 3x + 2

29 
	 
a = 4

3
, b = 1

3
30 

	  
x = 3, x = 21, x = 2 1

4
+ 3

4
i, 	x = 2 1

4
2 3

4
i

31 
	  
a = 21, b = 24, c = 4

	
32 

	  
p = 25, q = 23, r = 251

33 
	  
a = 25

	
34 

	  
m = 22, n = 26

35  	 b = 18 	 36  b)		 R = 3

37	 a)	 sum	5			2	__	
3

		,	product	5	5	 b)	 sum	5	1,	product	5	7

	 c)	 sum	5			1	__	
3

		,	product	5	2		1	__	
2

		

39	 29,	3,	6

40	 2,	24,	8

41	 3	1	2i,	2	1	i,	2	2	i

42	 k 5	3

43	 k	5	28

Exercise 3.4
  1 

	

x

y

�6

�4

�2

2

�2�4�6 20 4 6

4

6

	 vertical	asymptote:	
	  
x = 22

	 horizontal	asymptote:	
	 
y = 0

  2 

	

x

y

�6

�4

�2

2

�2�4�6 2 4 6

4

6

0

	 vertical	asymptote:		 x = 2
	 horizontal	asymptote:	

	 
y = 0

  3 

	

x

y

�4

�2

2

�2�4�6 2 4 6

4

6

8

10

12

0

  x-intercept:	
	

1
4

, 0( ),	y -intercept:	
	

0,1( )
	 vertical	asymptote:		 x = 1 	 horizontal	asymptote:	

	 
y = 4

  4 

	

x

y

�2

�4

�2�4 2 4

2

4

0

  x-	and	y-intercept:	
	

0, 0( )
	 vertical	asymptotes:		  x = 23, x = 3 	

horizontal	asymptote:	
	 
y = 0
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49 10th term 50 €3714.87
51 £2921.16

Exercise 4.4
 1 11  280  2 �  10  5469 _______ 

1024
    3 0.7

 4   10 ___ 7     5   
16 � 4 √

__

 3  
 ________ 

39
  

 6 a)   52 ___ 
99

   b)   449 ___ 
990

   c)   7459 ____ 
2475

  

 7 13  026.135 (£13  026.14) 
 8 940  9 6578

10 42 625 11   
n(7 + 3n)

 ________ 
2 

  

12 17 terms 13 85 terms
14 d = 4 15 a) 250, 125 250, b) 83 501
16 a = 1, d = 5 17 2890
18 0.290 19 �2.065
20 11 400 21 1.191

22 49.2 23   6 __ 5  

24   
3 +  √

__

 6  
 ______ 

2
   25 3,   18 ___ 5  ,   93 ___ 

25
  ,   468 ___ 

125
  ,   15 ___ 4    (�1 �   1 __ 

5n   ) 

26   1 __ 
6

  ,   1 __ 4  ,   3 ___ 
10

  ,   1 __ 
3

  ;   n ______ 
2n + 4

   

27  √
__

 2   � 1,  √
__

 3   � 1, 1,  √
__

 5   � 1;  √
_____

 n + 1   � 1
28 1.945, 152.42 29 127, 128

30   819 ___ 
128

  ,   32 ___ 5   31 11 866

32 763 517 33 14 348 906
34 �150

Exercise 4.5
 1 a) 120 b) 120 c) 20 d) 336
 2 a) 1 b) 1 c) 120 d) 120
 3 a) 70 b) 70 c) 330 d) 330 
 4 a) 0 b) 39 916 800 c) 0 d) 10
 5 a) F b) F c) T 
 6 24
 7 72  8 312
 9 16 777 216 10 262 144
11 1 757 600 000 12 81 000
13 a) 40 320 b) 384 
14 a) 40 320 b) 720
15 JANE, JAEN, JNAE, JNEA, JEAN, JENA, AJNE, AJEN,
 ANJE, ANEJ, AEJN, AENJ, NJAE, NJEA, NEJA, NEAJ,
 NAJE, NAEJ, EJAN, EJNA, EAJN, EANJ, ENJA, ENAJ
16 Mag, Mga, Mai, …(60 of them)
17 a) 175 760 000 b) 174 790 000
18 a) 4080 b) 1680 c) 1050 d) 1980
 e) 3150
19 a) 296 b) 1460 c) 504
20 a) 125 000 b) 117 600 c) 61 250 d) 176 400
21 768
22 a) 36 b) 256
23 a) 5985 b) 2376 c) 2475
24 a) 2280 b) 748 c) 770
25 a) 1 192 052 400  b) 4560, 0.000 38% 
 c) 265 004 096, 22.2%
26 a) 74 613 b) 7560
27 54 867 456 000

Exercise 4.6
 1 a) x 5 � 10x 4y � 40x 3y 2 � 80x 2y 3 � 80xy 4 � 32y 5

 b) a 4 � 4a 3b � 6a 2b 2 � 4ab 3 � b 4

 c) x 6 � 18x 5 � 135x 4 � 540x 3 � 1215x 2 � 1458x � 729
 d) 16 � 32x 3 � 24x 6 � 8x 9 � x 12

 e) x 7 � 21bx 6 � 189b 2x 5 � 945b 3x 4 � 2835b 4x 3  
  � 5103b 5x 2 � 5103b 6x � 2187b 7

 f) 64n 6 � 192n 3 � 240 �   160 ___ 
n 3

   �   60 ___ 
n 6

   �   12 ___ 
n9   �   1 ___ 

n 12  

 g)   81 ___ 
x 4

   �   216 _____ 
x 2 √

__
 x  
   �   216 ___ x   � 96 √

__
 x   � 16x 2

 2 a) 56 b) 0 c) 1225 d) 32 e) 0
 3 a) x 7 � 14x 6y � 84x 5y 2 � 280x 4y 3 � 560x 3y 4 � 672x 2y 5  

  � 448xy 6 � 128y 7

 b) a 6 � 6a 5b � 15a 4b 2 � 20a 3b 3 � 15a 2b 4 � 6ab 5 � b 6

 c) x 5 � 15x 4 � 90x 3 � 270x 2 � 405x � 243
 d) x 18 � 12x 15 � 60x 12 � 160x 9 � 240x 6 � 192x 3 � 64
 e) x 7 � 21bx 6 � 189b 2x 5 � 945b 3x 4 � 2835b 4x 3 � 5103b 5x 2  

  � 5103b 6x � 2187b 7

 f) 64n 6 � 192n 3 � 240 �   160 ___ 
n 3

   �   60 ___ 
n 6

   �   12 ___ 
n 9

   �   1 ___ 
n 12  

 g)   81 ___ 
x 4

   �   216 _____ 
x 2 √

__
 x  
   �   216 ___ x   � 96 √

__
 x   � 16x 2

 h) 112 i) 1792 √
__

 3  
 j) 16 k) �23 � 10i √

__

 2  

 4 a) x 45 � 90x 43 � 3960x 41

 b)  Does not exist as the powers of x decrease by 2’s starting 
at 45. There is no chance for any expression to have zero 
exponent.

 c)  (�  45       43   ) x 2 (�  �2 ___ x   ) 
43

 �  (�  45       44   ) x  (�  �2 ___ x   ) 
44

 �  (�  �2 ___ x   ) 
45

� �  (�  45       43   )   2
43
 ___ 

x 41   

   �  (�  45       44   )   2
44
 ___ 

x 43   �   2
45
 ___ 

x 45  

 d)  (�  45       21   ) x 24 (�  �2 ___ x   ) 
21

 � �  (�  45       21   )  � 221x 3

 5  (�  n     
k
   )  �   n! _________ 

k!(n � k)!
   �   n! _________ 

(n � k)!k!
   �   n! ___________________  

(n � k)!(n � (n � k))!
   

    �  (�  n             
n � k

   ) 

 6 (1 � 1)n �  (�  n     0   )  �  (�  n     1   )  �  (�  n     2   )  + … �  (�  n     n   ) 

 2n � 1 �  (�  n     1   )  �  (�  n     2   )  + … �  (�  n     n   )  ⇒ 2n � 1 �  (�  n     1   )  �  (�  n     2   )  

           + …  (�  n     n   )  

 7 Answers vary  8  (�  1 _ 3   �   2 _ 3   ) 
6
 � 1

 9  (�  2 _ 5   �   3 _ 5   ) 
8
 � 1 10  (�  1 _ 7   �   6 _ 7   ) 

n
 � 1

11 15 12 90 720
13 16 128 14 1.1045, 0.9045
15 Proof

16 a)   7 __ 
9

   b)   38 ___ 
110

   c)   31  808 ______ 
9900

  

17 �145  152 18 35a3 19 96  096
20 243n 5 � 810n 4m � 1080n 3m 2 � 720n 2m 3 � 240nm 4 � 32m 5

21 7  838  208

Exercise 4.7
 1 2 � 4 � 6 � … � 2n � n(n � 1)
 2–20  All proofs

Practice questions
 1 D = 5, n = 20
 2 €2098.63
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1001

	 b)	 	
	__

	
›
	IR 	5		( 		 5				

2	  25
	__	6		
		)	

  8	 a)	 	( 		 745				1000		)		 b)	 600		km/h	 c)	 at	1.5	hrs

	 d)	 	( 	325				940		)		 e)	 451		km

  9	 2n2	2	n	112	5	0	does	not	have	real	solutions,	so	it	is	not	
possible.

10  a	=			p __	
2

			2	2 11  0

Chapter 10
Exercise 10.1
  1  5	+	2i    2  7	2		√

__

	7		i    3  26	+	0i

  4  27	+	0i    5  0	+	9i    6  0	2			5	__	4			i

  7  21	2	i    8  25	+	9i    9  14	+	23i
10  22	+	7i  11  34	2	13i  12  5	2	i

13 
	  

16
29

2 11
29

i
	

14 
	  

4
13

2 7
13

i
	

15  1

16  		25	___	
36

			 17 
	  
2 1

13
2 18

13
i
	

18  8	2	i

19  27	2	3i  20  4	+	10i  21 
	 

5
13

+ 12
13

i

22 
	 

48
25

+ 36
25

i
	

23  2	+	9i  24  68

25 
	  

8
13

2 63
26

i
	

26 
	 

7
65

+ 4
65

i
	

27 
	 

5
169

+ 12
169

i

28 
	 

12
25

+ 8
25

i
	

29 
	 

498
169

+ 553
169

i   30 
	  
2 33

25
2 56

25
i

31 
	  

17
13

2 19
13

i
	

32  x	=	2			1	__	
2

		,	y	=	22;	and	x	=	1,	y	=	1

33  a)	 28	 c)	 248

34  a)	 24i  c)	 246

35 
	 
x 2 + y 2 = 4

	
36 

	  

9 2 2
3

+ 2
3

i

37  x	=	2			2	___	
65

		,	y	=			29	___	
65

			 38 
	 

1
2

1 + i( )
39  5	+	12i  40  (x,	y)	=	(2,	21)	or	(x,	y)	=	(22,	1)
41  a)	 (x,	y)	=	(1,	3)	or	(x,	y)	=	(21,	23)
	 b)	 2i,	21	2	i

42 

	  

23i,
3 3 + i( )

2
,
3 2 3 + i( )

2












43 

	  

1
2

2 2i, 3
	

44 
	  
f (x) = 2x 4 211x 3 + 15x 2 + 17x 211

45 
	 
f (x) = x 4 + 2x 3 + 8x + 16

46  5	2	2i,	23	 47 
	  
1 + i 3,2 2

3 	
48  Verify

49  a)	 k	=	0	±1	 b)	 	 k = ± 3 ± 2 2

50 
	  
z

1
= 1 + i, z

2
= 2 2i

	
51 

	  
z

1
= 7 2 4i

3
, z

2
= 1 + 6i

3

Exercise 10.2
  1  2	√

__

	2			cis		( 		p __	4			)			   2  2	cis		( 		p __	
6

			)			   3  2	√
__

	2			cis		( 		7p ___	4	 		)	

  4  2	√
__

	2			cis		( 		11p ____	
6

	 		)		   5  4	cis			5p ___	
3

	 		   6  3	√
__

	2			cis		( 		3p ___	4	 		)	

  7  4	cis	( 			p __	
2

			)		   8  6	cis		( 		7p ___	
6

	 		)		   9  	√
__

	2			cis		( 		p __	4			)	

10  15	cis	p 11  		1	__	5			cis	(5.64)	 12  3	√
__

	2			cis		( 		3p ___	4	 		)	

13  p cis	(0)		 14  e	cis		( 		p __	
2

			)			 15  		
2	√

__

	3		
	_____	

2
	 		+			i __	

2
			,			

	√
__

	3		
	___	

2
	 		+			i __	

2
		

16  1,			1	__	
2

			2			
	√

__

	3			i
 ____	

2
	 			 17  		

2	√
__

	3		
	_____	

2
	 		+			i __	

2
			,	2i  18  2i,				21	____	

2
	 		+			

	√
__

	3			i
 ____	

2
	 		

19  		
	√

__

	6			+		√
__

	2		
	_______	

2
	 		+	i			

	√
__

	6			2		√
__

	2		
	________	

2
	 		,			

9(2	√
__

	6			+		√
__

	2)		
		____________	

8
	 		2 i			

9(	√
__

	6			+		√
__

	2		)
	__________	

8
	 	

20  23		√
__

	3			2	3	+	i	(3	√
__

	3			2	3),			
3	√

__

	3			2	3
	_______	4	 		2			

i (3	√
__

	3			+	3)
	__________	4	 	

21  		2		√
__

	2			_____	
2

	 		(1	+	i),				
√

__

	2			___	
2

	 		(1	+	i)	

22  6,			23	___	4	 		2			
3	√

__

	3		i
 ____	4	 		

23  		
5	√

__

	6			2	15	√
__

	2		
	___________	

48
	 		2 i			

5	√
__

	6			+	15	√
__

	2		
	__________	

48
	 		,			

25	√
__

	6			2	15	√
__

	2		
		____________	

64
	 		+	i			

5	√
__

	6			2	15	√
__

	2		
	___________	

64
	 		

24  23	√
__

	3			+	3	+	i(3	√
__

	3			+	3),				
3	√

__

	3			+	3
	_______	4	 			+				

i(3	√
__

	3			2	3)
	__________	4	 	

25  z1	=	2	cis			p __	
6

			,	z2	=	4	cis			2p ____	
3

	 		,			1	__	z1
			=			1	__	

2
			cis	2			p __	

6
			,			1	__	z2

			=			1	__	4			cis			p __	
3

			,	

	 z1z2	=	8	cis			2p ____	
6

	 		,			
z1	__	z2

			=			1	__	
2

			cis			p __	
2

		

26  z1	=	2	√
__

	2			cis			p __	
6

			,	z2	=	4	√
__

	3			cis			2p ____	
3

	 		,			1	__	z1
			=				

√
__

	2			___	4	 		cis			p __	
6

			,			1	__	z2
			=			

	√
__

	3		
	___	

12
			cis			p __	

3
			

,	

	 z1z2	=	8	√
__

	6			cis			2p ____	
6

	 		,			
z1	__	z2

			=			
	√

__

	6		
	___	

6
	 		cis			p __	

2
			

27  z1	=	8	cis		p __	
6

			,	z2	=	3	√
__

	2			cis			23p _____	4	 		,			1	__	z1
			=			1	__	

8
			cis			2p ____	

6
	 		,			1	__	z2

			=				
√

__

	2			___	
6

	 		cis			3p ___	4	 		,	

	 z1z2	=	24		√
__

	2			cis			27p _____	
12

	 		,			
z1	__	z2

			=			4	√
__

	2			____	
3

	 		cis			11p ____	
12

	 		

28  z1	=		√
__

	3			cis			p __	
2

			,	z2	=	2	√
__

	2			cis			22p _____	
3

	 		,			1	__	z1
			=			

	√
__

	3		
	___	

3
	 		cis			2p ____	

2
	 		,	

	 		1	__	z2
			=				

√
__

	2			___	
8

	 		cis			2p ___	
3

	 		,	z1z2	=	2	√
__

	6			cis			2p ____	
6

	 		,			
z1	__	z2

			=			
	√

__

	6		
	___	4	 		cis			25p _____	

6
	 		

29  z1	=		√
___

	10			cis			p __	4			,	z2	=	2	√
__

	2			cis			p __	
2

			,			1	__	z1
			=			

	√
___

	10		
	____	

10
	 		cis			p __	4			,			1	__	z2

			=				
√

__

	2			___	
8

	 		cis			p __	
2

			

,	z1z2	=	4		√
__

	5			cis			3p ___	4	 		,			
z1	__	z2

			=			
	√

__
	5		
	___	

2
	 		cis			2p ____	4	 		

30  z1	=	2	cis			p __	
3

		,	z2	=	2	√
__

	3			cis	0,			1	__	z1
			=			1	__	

2
			cis			2p ____	

3
	 		,			1	__	z2

			=			
	√

__

	3		
	___	

6
	 		cis	0,	

	 z1z2	=	4	√
__

	3			cis			p __	
3

		,			
z1	__	z2

			=			
	√

__

	3		
	___	

3
	 		cis			p __	

3
			

31  b)		(i)

													

1

0.5

0

–0.5

	 (ii)	 arg(z1)	=			2p ____	
6

	 		,	arg(z2)	=			25p _____	
6

	 		

32  Verify

33  a)	 		
	√

__

	3		
	___	

2
	 		2			3i __	

2
				 b)	 		

22	√
__

	3		
	______	

3
	 			 c)	 	√

__

	3		i

34  |z1|	=	4,	arg(z1)	=			2p ____	
6

	 		,	|z2|	=	2	√
__

	2		,	arg(z2)	=			p __	4			,	|z3|	=	8	√
__

	2			,	

	 arg(z3)	=			p ___	
12

			

35  22	2	2	√
__

	3				18.5
36  a)	 {(x,	y):	x 2	+	y 2	=	9},	the	circle	centre	(0,	0)	radius	3
	 b)	 {(x,	y):	x	=	0},	the	y-axis
	 c)	 {(x,	y):	x	=	4},	the	line	x	=	4
	 d)	 {(x,	y):	(x	2 3)2	1	y 2	=	4},	the	circle	centre	(3,	0)	radius	2
	 e)	 	{(x,	y):	1	2	x	1	3	and	y	=	0},	the	line	segment	between	

(1,	0)	and	(3,	0)	


