- 14. (a) Find real numbers a and b such that $(a + bi)^2 = -3 4i$.
 - (b) Hence solve the equation: $z^2 + i\sqrt{3}z + i = 0$ [6 marks]
- 15. Given that $|z| = \sqrt{3}$, solve the equation $2z^* + \frac{3}{iz} = \sqrt{15}$.
- 16. Given that |z|=3, solve the equation $z-\frac{12i}{z^*}=5$. [5 marks]
- 18. If z = x + iy, find the real and the imaginary parts of $\frac{z}{z+1}$ in terms of x and y, simplifying your answers as far as possible. [6 marks]
- 19. $w = \frac{kz}{z^2 + 1}$ where $z^2 \neq -1$. If Im(w) = Im(k) = 0 and $Im(z) \neq 0$ prove that |z| = 1. [6 marks]