Exponential function

正々 メラメ

K ロ ト K 伊 ト K

重

 2990

We will analyse functions $f(x)=a^\times$, where $a\in\mathbb{R}^+$, i.e. $\,$ a is a positive real number.

造

メロト メ都 トメ ヨ トメ ヨ

 OQ

These are some examples of an exponential function:

$$
if(x)=3^x,
$$

 \equiv 990

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,

 \equiv 990

イロト イ部 トメ ヨ トメ ヨト

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,

 \equiv 990

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

 \equiv 990

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

Each of the above is of the form $f(x) = a^x$, but we divide them into 3 categories:

 \equiv 990

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

Each of the above is of the form $f(x) = a^x$, but we divide them into 3 categories:

 $f(x) = a^x$, where $a > 1$, examples (i) and (iii),

 \equiv 940

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

Each of the above is of the form $f(x) = a^x$, but we divide them into 3 categories:

$$
f(x) = a^x
$$
, where $a > 1$, examples (i) and (iii), $f(x) = a^x$, where $0 < a < 1$, example (ii),

 \equiv 990

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

Each of the above is of the form $f(x) = a^x$, but we divide them into 3 categories:

$$
f(x) = a^x
$$
, where $a > 1$, examples (i) and (iii), $f(x) = a^x$, where $0 < a < 1$, example (ii), $f(x) = a^x$, where $a = 1$.

 \equiv 990

These are some examples of an exponential function:

i
$$
f(x) = 3^x
$$
,
ii $f(x) = (0.2)^x$,
iii $f(x) = (1.3)^x$,
iv $f(x) = 1^x$.

Each of the above is of the form $f(x) = a^x$, but we divide them into 3 categories:

$$
f(x) = a^x
$$
, where $a > 1$, examples (i) and (iii), $f(x) = a^x$, where $0 < a < 1$, example (ii), $f(x) = a^x$, where $a = 1$.

We will analyse them separately.

 \equiv 990

We will start with $f(x) = a^x$, where $a > 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q @

We will start with $f(x) = a^x$, where $a > 1$. Examples include: $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 5^x$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

We will start with $f(x) = a^x$, where $a > 1$. Examples include: $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 5^x$.

We will start with the primary school approach. Substitute some value for x and organize the results into a table:

 \equiv \cap α

メロメ メ都 メメ きょくきょ

We will start with $f(x) = a^x$, where $a > 1$. Examples include: $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 5^x$.

We will start with the primary school approach. Substitute some value for x and organize the results into a table:

 \equiv \cap α

メロメ メ都 メメ きょくきょ

We can use the table to draw the graphs:

重

イロト イ部 トメ ヨ トメ ヨト

 2990

We can use the table to draw the graphs:

What observations can we make?

イロト イ母 トイミト イミト ニヨー りんぴ

What observations can we make? For $x = 0$, the value is 1.

 \equiv 990

What observations can we make?

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

 \equiv 990

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value.

一番

 ORO

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

- Br

 η an

イロト イ押ト イヨト イヨト

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.).

- Br

 Ω

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

- Br

 Ω

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function.

 \equiv \cap α

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

 \equiv \cap α

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0.

 $=$ Ω

イロト イ押ト イヨト イヨト

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0. $\lim_{x \to -\infty} f(x) = 0.$

 $=$ Ω

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0. $\lim_{x \to -\infty} f(x) = 0.$

The function is always positive.

 \equiv \cap a \cap

For $x=0$, the value is 1. No surprises here since $f(0)=a^0=1.$

The greater the argument, the greater the value. So the function is increasing.

We can substitute any value for x (fraction, 0, negatives, etc.). So the domain is all real numbers.

As x approaches infinity, then so does the values of the function. $\lim_{x\to\infty}f(x)=\infty.$

As x approaches minus infinity, the values of the function approach 0. $\lim_{x \to -\infty} f(x) = 0.$

The function is always positive. The range is $]0, \infty[$.

KOD KARD KED KED B YOUR

Based on these observations we can do some exercises.

 $E = 990$

K ロラ X 御う X 君う X 君う

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

 \equiv \cap α

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

 \equiv \cap α

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with $a > 1$ (7 > 1),

 $=$ Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with $a > 1$ $(7 > 1)$, so it's an increasing function,

 $=$ Ω

イロト イ押ト イヨト イヨト

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with $a > 1$ $(7 > 1)$, so it's an increasing function, so the greater the argument, the greater the value.

 $=$ Ω

イロト イ押ト イヨト イヨト
$a > 1$

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with $a > 1$ $(7 > 1)$, so it's an increasing function, so the greater the argument, the greater the value. We will organize the arguments first:

 $=$ Ω

$a > 1$

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with $a > 1$ $(7 > 1)$, so it's an increasing function, so the greater the argument, the greater the value. We will organize the arguments first:

$$
-\sqrt{6}<\sqrt{2}<\sqrt{3}<2<2\sqrt{2}
$$

 $=$ Ω

$a > 1$

Based on these observations we can do some exercises. Remember however that we are only considering $f(x) = a^x$, where $a > 1$.

Arrange the following in ascending order:

$$
7^{\sqrt{3}}
$$
, $7^{\sqrt{2}}$, 7^2 , $7^{-\sqrt{6}}$, $7^{2\sqrt{2}}$

We can think of the function $f(x) = 7^x$, it's an exponential function $f(x) = a^x$ with $a > 1$ $(7 > 1)$, so it's an increasing function, so the greater the argument, the greater the value. We will organize the arguments first:

$$
-\sqrt{6}<\sqrt{2}<\sqrt{3}<2<2\sqrt{2}
$$

so we have:

$$
7^{-\sqrt{6}} < 7^{\sqrt{2}} < 7^{\sqrt{3}} < 7^2 < 7^{2\sqrt{2}}
$$

 $=$ Ω

Find the range of
$$
f(x) = \frac{2}{3^x + 1}
$$
.

イロト (個) (量) (量) (量) 量 のQQ

Find the range of $f(x) = \frac{2}{3^x + 1}$.

In the denominator we have a function 3^{\times} , whose range is $]0,\infty[$.

- 로

 Ω

Find the range of $f(x) = \frac{2}{3^x + 1}$.

In the denominator we have a function 3^{\times} , whose range is $]0,\infty[$. So the range of values of the denominator is $]1,\infty[$.

- 3

 Ω

Find the range of $f(x) = \frac{2}{3^x + 1}$.

In the denominator we have a function 3^{\times} , whose range is $]0,\infty[$.

So the range of values of the denominator is $]1,\infty[$. The denominator is then always positive, so the greater the denominator, the smaller the whole fraction and vice versa.

- 3

 QQQ

Find the range of $f(x) = \frac{2}{3^x + 1}$.

In the denominator we have a function 3^{\times} , whose range is $]0,\infty[$.

So the range of values of the denominator is $]1,\infty[$. The denominator is then always positive, so the greater the denominator, the smaller the whole fraction and vice versa.

So the range of the function will be]0, 2[(0 when the denominator approaches ∞ , and 2 when the denominator approaches 1).

 Ω

Find the range of
$$
f(x) = \frac{2^x + 4}{2^x + 1}
$$
.

イロト (個) (量) (量) (量) 量 のQQ

Find the range of
$$
f(x) = \frac{2^x + 4}{2^x + 1}
$$
.

We will rearrange the function:

- 로

 2990

イロト イ部 トイヨ トイヨト

Find the range of
$$
f(x) = \frac{2^x + 4}{2^x + 1}
$$
.

We will rearrange the function:

$$
f(x) = \frac{2^x + 4}{2^x + 1} = \frac{2^x + 1 + 3}{2^x + 1} = 1 + \frac{3}{2^x + 1}
$$

- 로

 2990

イロト イ部 トイヨ トイヨト

Find the range of
$$
f(x) = \frac{2^x + 4}{2^x + 1}
$$
.

We will rearrange the function:

$$
f(x) = \frac{2^{x} + 4}{2^{x} + 1} = \frac{2^{x} + 1 + 3}{2^{x} + 1} = 1 + \frac{3}{2^{x} + 1}
$$

Now the problem is similar to the previous one.

D.

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Find the range of
$$
f(x) = \frac{2^x + 4}{2^x + 1}
$$
.

We will rearrange the function:

$$
f(x) = \frac{2^x + 4}{2^x + 1} = \frac{2^x + 1 + 3}{2^x + 1} = 1 + \frac{3}{2^x + 1}
$$

Now the problem is similar to the previous one. $2^\times + 1$ has range of $]1,\infty[$, so $\frac{3}{2}$ $\frac{8}{2^{x}+1}$ has range of]0, 3[,

- 30

 Ω

Find the range of
$$
f(x) = \frac{2^x + 4}{2^x + 1}
$$
.

We will rearrange the function:

$$
f(x) = \frac{2^{x} + 4}{2^{x} + 1} = \frac{2^{x} + 1 + 3}{2^{x} + 1} = 1 + \frac{3}{2^{x} + 1}
$$

Now the problem is similar to the previous one. $2^\times + 1$ has range of $]1,\infty[$, so $\frac{3}{2}$ $\frac{8}{2^{x}+1}$ has range of]0, 3[,

We add 1 so in the end the range of the function is $\vert 1, 4 \vert$.

- 3

 Ω

This should look familiar to you.

This should look familiar to you. It's a disguised quadratic.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

With $t \in]0, \infty[$ (since this is the range of 6^{\times}).

KOD KARD KED KED B YOUR

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

With $t\in]0,\infty[$ (since this is the range of 6^\times). Now we analyse the quadratic:

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

With $t\in]0,\infty[$ (since this is the range of 6^\times). Now we analyse the quadratic: $a = -1 < 0$, so arms downwards.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

With $t\in]0,\infty[$ (since this is the range of 6^\times). Now we analyse the quadratic: $a = -1 < 0$, so arms downwards. No roots.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

With $t\in]0,\infty[$ (since this is the range of 6^\times). Now we analyse the quadratic: $a = -1 < 0$, so arms downwards. No roots. Y-intercept $(0, -5)$.

This should look familiar to you. It's a disguised quadratic. We set $t = 6^x$ and we get:

$$
f(t)=-t^2-4t-5
$$

With $t\in]0,\infty[$ (since this is the range of 6^\times). Now we analyse the quadratic: $a = -1 < 0$, so arms downwards. No roots. Y-intercept $(0, -5)$. The vertex is $(-2, -1)$.

The graph looks like this

The graph looks like this

 -4 重 J. [Batory A & A HL](#page-0-0) December 7, 2021 11 / 20

÷. \rightarrow

K ロ ト K 伊 ト K

 298

活

The graph looks like this

But we're interested in the blue part only (since $t \in]0, \infty[$), so in the end the range is $]-\infty,-5[$.

∢ ⊡

 QQ

Short but important note must be made here. The blue part of the graph of the quadratic is **not** the graph of $f(x)$ (in particular the domain of $f(x)$) is all real numbers), but the ranges of these functions are the same.

 QQ

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

We get the function $f(t)=2^t$, which is easy to analyse,

KOD KARD KED KED DA MAA

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

We get the function $f(t)=2^t$, which is easy to analyse, we just need to find its domain.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

We get the function $f(t)=2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1,1]$, then $t = -x^2 + 9 \in [8,9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain $[-1, 1]$).

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

We get the function $f(t)=2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1,1]$, then $t = -x^2 + 9 \in [8,9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain $[-1, 1]$).

We go back to $f(t) = 2^t$,

KOD KARD KED KED B YOUR

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

We get the function $f(t)=2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1,1]$, then $t = -x^2 + 9 \in [8,9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain $[-1, 1]$).

We go back to $f(t) = 2^t$, the domain is $t \in [8,9]$ and 2^t is an increasing function,

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Find the range of $f(x) = 2^{-x^2+9}$ for $x \in [-1,1]$.

We will set $t=-x^2+9$ to simplify things.

We get the function $f(t)=2^t$, which is easy to analyse, we just need to find its domain.

Since $x \in [-1,1]$, then $t = -x^2 + 9 \in [8,9]$ (this is a simple quadratic, if you struggle to understand, where these values came from, sketch the function with the domain $[-1, 1]$).

We go back to $f(t) = 2^t$, the domain is $t \in [8,9]$ and 2^t is an increasing function, so the range is $[2^8, 2^9]$, so $[256, 512]$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @
Now we will consider the case $f(x) = a^x$, where $0 < a < 1$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Now we will consider the case $f(x) = a^x$, where $0 < a < 1$.Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

KED KARD KED KED E YORA

Now we will consider the case $f(x) = a^x$, where $0 < a < 1$.Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case $a > 1$, namely create a table and based on that draw the graph.

 $=$ Ω

Now we will consider the case $f(x) = a^x$, where $0 < a < 1$.Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case $a > 1$, namely create a table and based on that draw the graph.

We will however look at this differently. Let's compare $f_1(\mathsf{x}) = (0.5)^{\mathsf{x}}$ and $f_2(x) = 2^x$,

KED KARD KED KED E VOOR

Now we will consider the case $f(x) = a^x$, where $0 < a < 1$.Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case $a > 1$, namely create a table and based on that draw the graph.

We will however look at this differently. Let's compare $f_1(\mathsf{x}) = (0.5)^{\mathsf{x}}$ and $f_2(x) = 2^x$, we have:

$$
f_1(x) = \left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x} = f_2(-x)
$$

What does this mean?

KED KARD KED KED E VOOR

Now we will consider the case $f(x) = a^x$, where $0 < a < 1$.Examples include $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$.

We can do what we did in the case $a > 1$, namely create a table and based on that draw the graph.

We will however look at this differently. Let's compare $f_1(\mathsf{x}) = (0.5)^{\mathsf{x}}$ and $f_2(x) = 2^x$, we have:

$$
f_1(x) = \left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x} = f_2(-x)
$$

What does this mean? It means that the graph of $f_1(x)$ is a reflection of the graph of $f_2(x)$ in the y-axis.

KED KARD KED KED E VOOR

So the graphs of $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$ look as follows (dotted lines represent graphs of 2^x , 3^x and 5^x):

KOD KARD KED KED DA MAA

So the graphs of $f(x) = (0.5)^x$, $g(x) = (\frac{1}{3})^x$, $h(x) = (0.2)^x$ look as follows (dotted lines represent graphs of 2^x , 3^x and 5^x):

Tomasz Lechowski [Batory A & A HL](#page-0-0) December 7, 2021 15 / 20

What do we see?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

What do we see? The observation are similar:

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

 \equiv 990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value.

G. QQQ

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the smaller the value. So the function is decreasing.

 \equiv Ω

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

目

 QQ

正々 メラメ

4 0 8

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0.

D. Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

4 0 8

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0.$

 \equiv \cap α

→ 何 ▶ → ヨ ▶ → ヨ ▶

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0.$

As x approaches minus infinity, the values of the function approach infinity.

 $=$ Ω

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0.$

As x approaches minus infinity, the values of the function approach infinity. $\lim_{x \to -\infty} f(x) = \infty$.

 $=$ Ω

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0.$

As x approaches minus infinity, the values of the function approach infinity. $\lim_{x \to -\infty} f(x) = \infty$.

The function is always positive

 \equiv \cap α

What do we see? The observation are similar:

For $x = 0$, the value of the function is 1.

The larger the argument, the **smaller** the value. So the function is decreasing.

The domain is all real numbers.

As x approaches infinity, the values of the function approach 0. $\lim_{x\to\infty}f(x)=0.$

As x approaches minus infinity, the values of the function approach infinity. $\lim_{x \to -\infty} f(x) = \infty$.

The function is always positive The range of values is $]0, \infty[$.

Arrange in ascending order:

$$
\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \ \left(\frac{1}{4}\right)^{-1}, \ \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \ \left(\frac{1}{4}\right)^{3}, \ \ \left(\frac{1}{4}\right)^{2}
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Arrange in ascending order:

$$
\left(\frac{1}{4}\right)^{\sqrt{5}}
$$
, $\left(\frac{1}{4}\right)^{\sqrt{3}}$, $\left(\frac{1}{4}\right)^{-1}$, $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$, $\left(\frac{1}{4}\right)^{3}$, $\left(\frac{1}{4}\right)^{2}$

We consider the function $f(x) = \left(\frac{1}{4}\right)^{x}$ 4 $\bigg)^{\times}$, since $0 < \frac{1}{4} < 1$, the function is decreasing.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Arrange in ascending order:

$$
\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \ \left(\frac{1}{4}\right)^{-1}, \ \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \ \left(\frac{1}{4}\right)^{3}, \ \ \left(\frac{1}{4}\right)^{2}
$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^{x}$ 4 $\bigg)^{\times}$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

 Ω

イロト イ何 トイヨト イヨト ニヨー

Arrange in ascending order:

$$
\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \ \left(\frac{1}{4}\right)^{-1}, \ \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \ \left(\frac{1}{4}\right)^{3}, \ \ \left(\frac{1}{4}\right)^{2}
$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^{x}$ 4 $\bigg)^{\times}$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

$$
-1<-\frac{1}{2}<\sqrt{3}<2<\sqrt{5}<3
$$

 Ω

イロト イ何 トイヨト イヨト ニヨー

Arrange in ascending order:

$$
\left(\frac{1}{4}\right)^{\sqrt{5}}, \ \ \left(\frac{1}{4}\right)^{\sqrt{3}}, \ \ \left(\frac{1}{4}\right)^{-1}, \ \ \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \ \ \left(\frac{1}{4}\right)^{3}, \ \ \left(\frac{1}{4}\right)^{2}
$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^{x}$ 4 $\bigg)^{\times}$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

$$
-1<-\frac{1}{2}<\sqrt{3}<2<\sqrt{5}<3
$$

Since the function is decreasing (the larger the argument, the smaller the value) we have:

KED KAP KED KED E VOOR

Arrange in ascending order:

$$
\left(\frac{1}{4}\right)^{\sqrt{5}}, \quad \left(\frac{1}{4}\right)^{\sqrt{3}}, \quad \left(\frac{1}{4}\right)^{-1}, \quad \left(\frac{1}{4}\right)^{-\frac{1}{2}}, \quad \left(\frac{1}{4}\right)^3, \quad \left(\frac{1}{4}\right)^2
$$

We consider the function $f(x) = \left(\frac{1}{4}\right)^{x}$ 4 $\bigg)^{\times}$, since $0 < \frac{1}{4} < 1$, the function is decreasing. We arrange the arguments first:

$$
-1<-\frac{1}{2}<\sqrt{3}<2<\sqrt{5}<3
$$

Since the function is decreasing (the larger the argument, the smaller the value) we have:

$$
\left(\frac{1}{4}\right)^3 < \left(\frac{1}{4}\right)^{\sqrt{5}} < \left(\frac{1}{4}\right)^2 < \left(\frac{1}{4}\right)^{\sqrt{3}} < \left(\frac{1}{4}\right)^{-\frac{1}{2}} < \left(\frac{1}{4}\right)^{-1}
$$

Find the set of values of
$$
f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2-2x+1}
$$
 for $x \in [0,3]$.

イロト (個) (量) (量) (量) 量 のQQ

Find the set of values of
$$
f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2-2x+1}
$$
 for $x \in [0,3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})$ $\frac{\sqrt{3}}{3}\big)^t$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Find the set of values of
$$
f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2-2x+1}
$$
 for $x \in [0,3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})$ $\frac{\sqrt{3}}{3}\big)^t$. We need to find its domain.

KOD KARD KED KED DA MAA

Find the set of values of
$$
f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2-2x+1}
$$
 for $x \in [0,3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})$ $\frac{\sqrt{3}}{3}\big)^t$. We need to find its domain. Since $x\in[0,3]$, then $t=x^2-2x+1\in[0,4]$ $(t = 0 \text{ for } x = 1 \text{ and } t = 4 \text{ for } x = 3).$

- 30

 Ω

Find the set of values of
$$
f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2-2x+1}
$$
 for $x \in [0,3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})$ $\frac{\sqrt{3}}{3}\big)^t$. We need to find its domain. Since $x\in[0,3]$, then $t=x^2-2x+1\in[0,4]$ $(t = 0$ for $x = 1$ and $t = 4$ for $x = 3$).

 $f(t)$ is decreasing so we will get the least value for $t = 4$,

 \equiv \cap α

Find the set of values of
$$
f(x) = \left(\frac{\sqrt{3}}{3}\right)^{x^2-2x+1}
$$
 for $x \in [0,3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})$ $\frac{\sqrt{3}}{3}\big)^t$. We need to find its domain. Since $x\in[0,3]$, then $t=x^2-2x+1\in[0,4]$ $(t = 0$ for $x = 1$ and $t = 4$ for $x = 3$).

 $f(t)$ is decreasing so we will get the least value for $t = 4$, $f(4) = ($ $rac{1}{\sqrt{3}}$ $\frac{\sqrt{3}}{3}$ ⁴ = $\frac{1}{9}$ $\frac{1}{9}$ and the greatest value for $t = 0$, $f(0) = 1$.

- 30

 Ω

Find the set of values of $f(x) = \left(\frac{\sqrt{3}}{2}\right)^{\frac{1}{3}}$ 3 $\big\{x^2-2x+1\}$ for $x \in [0,3]$.

We let $t = x^2 - 2x + 1$ and we get a much simpler function $f(t) = (\frac{\sqrt{3}}{3})$ $\frac{\sqrt{3}}{3}\big)^t$. We need to find its domain. Since $x\in[0,3]$, then $t=x^2-2x+1\in[0,4]$ $(t = 0$ for $x = 1$ and $t = 4$ for $x = 3$).

 $f(t)$ is decreasing so we will get the least value for $t = 4$, $f(4) = ($ $rac{1}{\sqrt{3}}$ $\frac{\sqrt{3}}{3}$ ⁴ = $\frac{1}{9}$ $\frac{1}{9}$ and the greatest value for $t = 0$, $f(0) = 1$. So in the end the range is $[\frac{1}{9}, 1]$.

Finally the case $f(x) = a^x$, where $a = 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Finally the case $f(x) = a^x$, where $a = 1$. This is a trivial case $f(x) = a^x = 1^x = 1.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Finally the case $f(x) = a^x$, where $a = 1$. This is a trivial case $f(x) = a^x = 1^x = 1$. So we have a constant function, whose graph is a horizontal line $y = 1$.

KOD KARD KED KED B YOUR
Finally the case $f(x) = a^x$, where $a = 1$. This is a trivial case $f(x) = a^x = 1^x = 1$. So we have a constant function, whose graph is a horizontal line $y = 1$. No more needs to be said about this case.

 $=$ Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

In case of any questions you can email me at t.j.lechowski@gmail.com.

x

← ロ → → ← 何 →

 2990

活