3. [Maximum mark: 6]

Consider the polynomial $q(x) = 3x^3 - 11x^2 + kx + 8$.

- (a) Given that q(x) has a factor (x-4), find the value of k. [3]
- (b) Hence or otherwise, factorize q(x) as a product of linear factors. [3]

4. [Maximum mark: 4]

Find the coefficient of x^8 in the expansion of $\left(x^2 - \frac{2}{x}\right)^7$.

5. Let z = x + yi. Find the values of x and y if (1 - i)z = 1 - 3i.

(4 marks)

9. [Maximum mark: 7]

Two distinct roots for the equation $z^4 - 10z^3 + az^2 + bz + 50 = 0$ are c + i and 2 + id where a, b, c, $d \in \mathbb{R}$, d > 0.

- (a) Write down the other two roots in terms of c and d. [1]
- (b) Find the value of c and the value of d. [6]

12. [Maximum mark: 18]

Consider the polynomial $P(z) = z^5 - 10z^2 + 15z - 6$, $z \in \mathbb{C}$.

- (a) Write down the sum and the product of the roots of P(z) = 0. [2]
- (b) Show that (z-1) is a factor of P(z). [2]

The polynomial can be written in the form $P(z) = (z-1)^3(z^2+bz+c)$.

- (c) Find the value of b and the value of c. [5]
- (d) Hence find the complex roots of P(z) = 0. [3]