TRIGONOMETRIC FUNCTIONS AND EQUATIONS

Name:

1. (5 points) The angle α satisfies the equation

 $2\tan^2\alpha - 5\sec\alpha - 10 = 0$

where α is in the second quadrant. Find the **exact** value of sec α .

- 2. (6 points) The obtuse angle β is such than $\tan \beta = -\frac{5}{12}$. Find the values of
 - (a) $\sin\beta$
 - (b) $\cos\beta$
 - (c) $\sin 2\beta$
 - (d) $\cos 2\beta$

- 3. (7 points)
 - (a) (2 points) Show that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$.
 - (b) (2 points) Using substitution $t = 2\cos\theta$, show that $t^3 = 3t + 1$ becomes $\cos 3\theta = \frac{1}{2}$.
 - (c) (3 points) Hence find the exact values of the roots of the equation $x^3 3x 1 = 0$.

4. (5 points)

(a) Simplify the expression $\frac{\sin\theta}{1-\cos\theta} + \frac{\sin\theta}{1+\cos\theta}$. (b) Hence solve $\frac{\sin\theta}{1-\cos\theta} + \frac{\sin\theta}{1+\cos\theta} = \frac{4}{\sqrt{3}}$, for $0 \le \theta \le 2\pi$.

- 5. (10 points)
 - (a) Write down the minimum value of $\cos x$ and the smallest positive value of x (in radians) for which the minimum occurs.
 - (b) i. Describe two transformations which transform the graph of $y = \cos x$ to the graph of $y = 2\cos\left(x + \frac{\pi}{6}\right)$.
 - ii. Hence state the minimum value of $2\cos\left(x+\frac{\pi}{6}\right)$ and find the value of $x \in [0, 2\pi]$ for which the minimum occurs.
 - (c) The function f is defined for $x \in [0, 2\pi]$ by $f(x) = \frac{5}{3 + 2\cos\left(x + \frac{\pi}{6}\right)}$.
 - i. State, with reason, whether f has any vertical asymptotes.
 - ii. Find the range of f.