- **18.** With S_n denoting the sum of the first n terms of an arithmetic sequence, we are given that $S_1 = 9$ and $S_2 = 20$.
 - (a) Find the second term.
 - (b) Calculate the common difference of the sequence.
 - (c) Find the fourth term.
- **21.** In an arithmetic sequence of positive terms, a_n represents the nth term.

Given that
$$\frac{a_5}{a_{12}} = \frac{6}{13}$$
 and $a_1 \times a_3 = 32$, find $\sum_{i=1}^{100} a_i$

- **26.** Consider the arithmetic sequence 85, 78, 71, ... Find the sum of its positive terms.
- 32. Consider the infinite geometric series:

$$1 + \left(\frac{3x}{5}\right) + \left(\frac{3x}{5}\right)^2 + \left(\frac{3x}{5}\right)^3 + \dots$$

- (a) For what values of x does the series converge?
- **(b)** Find the sum of the series if x = 1.5
- **36.** Find $\sum_{r=1}^{50} \ln(2^r)$, giving the answer in the form $a \ln 2$, where $a \in \mathbb{Q}$
- **37.** Consider the sequence $\{a_n\}$ defined recursively by:

$$a_{n+1} = 3a_n - 2a_{n-1}, n \in \mathbb{Z}^+$$
, with $a_0 = 1, a_1 = 2$

- (a) Find a_2 , a_3 , and a_4 .
- **(b)** (i) Find the explicit form for a_n in terms of n.
 - (ii) Verify that your answer to part (i) satisfies the given recursive definition.

- **38.** The sum to infinity of a geometric sequence with all positive terms is 27, and the sum of the first two terms is 15. Find the value of:
 - (a) the common ratio
 - (b) the first term.
- **39.** The first four terms of an arithmetic sequence are 2, a b, 2a + b + 7, and a 3b, where a and b are constants. Find a and b.
- **41.** Three consecutive terms of an arithmetic sequence are: a, 1, and b. The terms 1, a, and b are consecutive terms of a geometric sequence. If $a \neq b$, find the value of a and of b.
- **42.** The diagram opposite shows a sector *AOB* of a circle of radius 1 and centre *O*, where $\widehat{AOB} = \theta$.

The lines (AB_1) , (A_1B_2) , and (A_2B_3) are perpendicular to OB. A_1B_1 and A_2B_2 are arcs of circles with centre O.

Calculate the sum to infinity of the arc lengths:

$$AB + A_1B_1 + A_2B_2 + A_3B_3 + \dots$$

Figure 3.7 Diagram for question 42

46. The sum of the first n terms of an arithmetic sequence $\{u_n\}$ is given by the formula $S_n = 4n^2 - 2n$. Three terms of this sequence, u_2 , u_m and u_{32} , are consecutive terms in a geometric sequence. Find m.