- 1. (a) Differentiate $f(x) = \arcsin x + 2\sqrt{1-x^2}$, $x \in [-1, 1]$.
 - (b) Find the coordinates of the point on the graph of y = f(x) in [-1, 1], where the gradient of the tangent to the curve is zero.

2. Find the gradient of the curve $e^{xy} + \ln(y^2) + e^y = 1 + e$ at the point (0, 1).

- 3. Find the gradient of the tangent to the curve $x^3 y^2 = \cos(\pi y)$ at the point (-1, 1).
- 4. The cubic curve $y = 8x^3 + bx^2 + cx + d$ has two distinct points P and Q, where the gradient is zero.
 - (a) Show that $b^2 > 24c$.

(b) Given that the coordinates of P and Q are $\left(\frac{1}{2}, -12\right)$ and $\left(-\frac{3}{2}, 20\right)$, respectively, find the values of *b*, *c* and *d*. (4)

5. If $y = \ln\left(\frac{1}{3}(1+e^{-2x})\right)$, show that $\frac{dy}{dx} = \frac{2}{3}(e^{-y}-3)$.

(Total 7 marks)

(Total 8 marks)

- 6. Consider the curve with equation $x^2 + xy + y^2 = 3$.
 - (a) Find in terms of k, the gradient of the curve at the point (-1, k).
 - (b) Given that the tangent to the curve is parallel to the *x*-axis at this point, find the value of k.

(1) (Total 6 marks)

(5)

1

(3)

(3)

(Total 6 marks)

(Total 7 marks)

(Total 6 marks)

(4)