Differentiation

8.1 Differentiation of polynomials, trigonometric, exponential and logarithmic functions; product and quotient rules; composite functions

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) \qquad f'(x) \qquad f(x) \qquad f'(x)$$

$$(ax+b)^n \qquad an(ax+b)^{n-1} \qquad \sin^{-1}x \qquad \frac{1}{\sqrt{(1-x^2)}}$$

$$\cos ax \qquad -a \sin ax \qquad \tan^{-1}x \qquad \frac{1}{1+x^2}$$

$$\sec ax \qquad a \sec^2 ax \qquad \ln ax \qquad \frac{1}{x}$$

$$\csc ax \qquad -a \csc ax \cot ax \qquad e^{ax} \qquad ae^{ax}$$

$$\cot ax \qquad -a \csc^2 ax$$

Product rule: if $y = uv$, then $\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$

Quotient rule: if $y = \frac{u}{v}$, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Chain rule: if $y = f(u)$ and $u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$

Basic

- 1 Find $\frac{dy}{dx}$ if y is:
- (a) x^5 (b) $x^{1/2}$ (c) $\sqrt[3]{x}$ (d) x^{-1}

- (e) $\frac{1}{x^2}$ (f) $\frac{1}{\sqrt{x}}$ (g) $\frac{1}{x^n}$

- Differentiate the following with respect to x.
 - (a) $3x^7$
- (a) 3x'(b) $6\sqrt{x}$ (c) $2x^4 x^3 + 2x$ (d) 5x + 3

(e) 3

- (f) $3x^4 \frac{x^3}{3} + 4x^2 \frac{x}{2} + 10$
- (g) $x + \frac{1}{x}$
- (h) $x^2 \frac{1}{x^2}$
- (i) $x^4 \frac{8}{x^2}$
- (j) $3x + \frac{4}{3}$
- (k) $6x^4 4x^6$
- (1) $ax^2 + bx + c$
- Using the chain rule, find f'(x) if f(x) is:

- (a) $(x+1)^4$ (b) $(2x+3)^5$ (c) $4(x-2)^2$ (d) $3(2-3x)^3$ (e) $(x^2+1)^2$ (f) $(3x^2+1)^4$ (g) $(1-x^2)^6$ (h) $(x^2-x)^5$ (i) $(\sqrt{x}+1)^{10}$ *(j) $\sqrt{1-x}$ (k) $\sqrt{x^2+2}$ (l) $(ax+b)^n$

- Using the chain rule, differentiate the following with respect to t.

- (a) $(t+3)^{-3}$ (b) $(2t+3)^{-1}$ *(c) $\frac{1}{3t+2}$ (d) $\frac{1}{\sqrt{(3t+1)}}$
- (e) $\frac{1}{(3-t^2)^5}$ (f) $\frac{1}{(1+\sqrt{t})^2}$ (g) $\frac{2}{\sqrt{2+t^2}}$ (h) $\frac{1}{(at+b)^n}$

- Using the product rule, find the derivative with respect to x of the following, simplifying your answers.
- *(a) $2x(x+1)^3$ (b) $x^2(2x^3+1)^5$ (c) $(x+1)^2(x+2)^3$
- (d) $(x^2 + 2)\sqrt{x}$ (e) $x\sqrt{x^2 + 2}$
- (f) $x^{n}(x+1)^{m}$
- Using the quotient rule, find $\frac{dy}{dx}$ for the following, simplifying your answers.
- (a) $\frac{x}{1+x^2}$ (b) $\frac{x+1}{x-1}$ (c) $\frac{x}{2x^2+1}$ (d) $\frac{1-x^2}{1+x^2}$
- *(e) $\frac{x}{(3x+1)^2}$ (f) $\frac{1+\sqrt{x}}{1-\sqrt{x}}$ (g) $\frac{x^2+1}{(x+1)^2}$ (h) $\frac{x^2}{\sqrt{1+x^2}}$

- For the following functions, find f'(x) if f(x) is:
 - (a) $2\sin x$

(b) $-4\cos x$

(c) $0.5 \tan x$

(d) $\sin 3x$

(e) $\cos 0.5x$

(f) $\tan 6x$

	(g) (j)	$-3\sin 2x$ $3\sin \pi x - 2\cos \theta$	$s\frac{1}{2}\pi x$	(h) (k)	$2\cos\frac{1}{2}x$ $3\tan\frac{1}{12}$	$\pi x - 0$	$0.5 \sin 2\pi x$	(i) (l)	$\frac{1}{6}\tan\frac{1}{6}x$ $\sec 7x$	
8	Differentiate the following with respect to x .									
	*(a) (d) (g) (j)	$\sin^2 x$ $\cos^2 x - 3\sin^2 x$ $\sqrt{\sin x}$ $\sin^2 \pi x$	(b) x (e) (h) (k)	sin 4 ta 4 c cos	$an^{2}x$ $\cos 3x^{2}$ $\sec x^{2}$	(c) (f) (i)	$\sin 2x$ $6\sin^3 2x$ $(\sin x + \cos x)$	$(x)^3$		
9	Fine	Find $\frac{dy}{dx}$ if y is equal to the following.								
	(a) (f)	$ \begin{array}{ccc} 2e^x & \text{(b)} & e^{\sin x} \\ e^{\sin x} & \text{(g)} & e^{\cos x} \end{array} $	e^{-x} (e) $e^{1/x}$ (1)	c) e n) e	$4x \exp e^x$	(d) (i)	$3e^{2x} (e^{2x} + 1)^2$	*(e) (j)	e^{x^2} $(e^{2x+1})^2$	
10	For the following functions $f(x)$, find $f'(x)$, simplifying your answers.									
		$ \begin{array}{ccc} 2 \ln x & \text{(b)} \\ \ln \sin x & \text{(f)} \end{array} $	$ \ln 2x \\ \ln (x^2 + $	1)	(c) 3 (g) ($\frac{1}{\ln 4x}$ $\ln x)^2$	*(d) ln x	c ²		
11		Using the product or quotient rule, differentiate the following with respect to x .								
	(a)	$x \sin x$	(b) $x^2 \cos^2 x$	s 4x	(c)	$\frac{e^x}{x}$				
		$x \ln x$	(e) $\frac{\ln x}{x^2}$		(f)	x^2e^{3x}				
	(g)	$\frac{\sin x}{x}$	(h) $\frac{\tan x}{x}$	il -s	(i)	$\frac{x^2}{\sin x}$				
	(j)	$e^{2x}\cos\pi x$	(k) $e^{x \sin x}$	x			$\cos x + \cos x$	$3x \sin x$	X	
		$x^2 \sec x$ (1	(7) (8)							
12	(a)	(a) (i) By rewriting $y = \sin^{-1} x$ as $x = \sin y$ find $\frac{dx}{dy}$.								

Intermediate

Find the derivative of $y = 2x^3 + 3x^2 - 36x$. Factorise your answer and hence find the values of x for which the derivative is equal to zero.

(ii) Using the fact that $\frac{dy}{dx} = \frac{1}{dx/dy}$, find $\frac{dy}{dx}$ in terms of x.

(b) Using a similar method, find $\frac{dy}{dx}$ if $y = \tan^{-1} x$.

The derivative of the curve $y = ax^3 + 2bx^2 + 3cx$ is $\frac{dy}{dx} = 6x^2 + 6x - 6$.

Find the values of the constants a, b and c, simplifying your answers as much as possible.

- Given that $f(x) = x \ln(x^3 4)$, find the value of f'(2). Leave your answer in terms of natural logarithms.
- 4 If $y = \frac{\ln x}{x}$ show that $\frac{dy}{dx} = 0$ when x = e.
- (a) Find $f'(\frac{\pi}{3})$ if $f(x) = 2\sin x 3\cos 2x$.
 - (b) Find f'(1) if $f(x) = 4x \ln x$.
 - (c) Find f'(0) and f'(1) if $f(x) = \exp(x^2 2x)$.
- 6 If $y = 64 \cos x \frac{8 \cos x}{\sin x}$ find the value of $\sin x$ for which $\frac{dy}{dx} = 0$.
- 7 (a) If $x^4y = 3$, find $\frac{dy}{dx}$ when x = 1.
 - (b) If pq = 9, find the value of $\frac{dp}{dq}$ when q = 3.
- If $y = a \cos x b \sin x$ and $\frac{dy}{dx} = 0$ when $x = \frac{\pi}{3}$, show that $a = \frac{-b}{\sqrt{3}}$.
- Find the derivatives of the following, simplifying your answers where possible.

 - (a) $x^4 + 3x^2$ (b) $\frac{1}{(3-2x)^3}$ (c) $x^2 \cos x$ (d) $\frac{2x+1}{3x-1}$
- (e) $\frac{x^2 + 1}{x^2 + 1}$ (f) $\sqrt{x^2 1}$ (g) $\sec^2 x$ (h) $\cot 5x$

- **10** Differentiate the following with respect to x.
 - *(a) $\sin^{-1} 2x$
- (b) $\tan^{-1} x^2$ (c) $\sin^{-1} \sqrt{x}$
- 11 Find and simplify the derivative of $\frac{x}{1+x^2} + \tan^{-1} x$.
- 12 Differentiate the following with respect to t.

 - (a) $5\sin^3 3t$ (b) $\frac{\sin t + 1}{\cos t + 1}$
- (c) $2\sin 2t \cos 3t$ (d) $\tan^{-1} 3t$

- (e) $\frac{\sin t}{e^t}$ (f) $\ln(1 + \tan^2 t)$

(i)
$$e^{-2x}\cos 2x$$

(ii)
$$3x \ln 2x$$

(iii)
$$e^x \sin x$$

(b) Use the quotient rule to differentiate:

(i)
$$\frac{x}{1+x}$$

(ii)
$$\frac{\tan^{-1} x}{1+x^2}$$

(i)
$$\frac{x}{1+x}$$
 (ii) $\frac{\tan^{-1} x}{1+x^2}$ (iii) $\frac{1-e^{-x}}{1+e^x}$

14 Differentiate:

$$(a) \quad \sqrt{\frac{1+4x}{2x-1}}$$

(a)
$$\sqrt{\frac{1+4x}{2x-1}}$$
 (b) $\tan^{-1}\left(\frac{1-4x}{4x+1}\right)$ (c) $\frac{x^2 \sin x}{\ln x}$

(c)
$$\frac{x^2 \sin x}{\ln x}$$

(d)
$$\frac{\exp(-x^2)}{\sqrt{x}}$$

(d)
$$\frac{\exp(-x^2)}{\sqrt{x}}$$
 (e) $\cos^{-1} x - x\sqrt{1-x^2}$ (f) $\ln(x+\sqrt{1+x^2})$

(f)
$$\ln(x + \sqrt{1 + x^2})$$

15 (a) Differentiate:

*(i)
$$\ln\left(\frac{x^2}{1+x^2}\right)$$

(ii)
$$\ln \sqrt{1+x}$$
.

*(i)
$$\ln\left(\frac{x^2}{1+x^2}\right)$$
 (ii) $\ln\sqrt{1+x}$ (iii) $\ln\left(\frac{x^2+1}{2x+1}\right)$

(b) Given that
$$f(x) = \ln\left(\frac{1+\sin x}{1-\sin x}\right)$$
 show that $f'(x) = \frac{2}{\cos x}$.

(i) Differentiate $y = (x^2 + 1)(x + 3)^{-2}$ as a product.

(ii) Now differentiate
$$y = \frac{x^2 + 1}{(x+3)^2}$$
 as a quotient.

(b) Why should your answers to part (a) be the same? Show that this is the case.

Advanced

Differentiate with respect to x:

(a)
$$\frac{x}{\sqrt{ax^2+b^2}}$$

(a)
$$\frac{x}{\sqrt{ax^2 + b}}$$
 (b) $\sin(\cos(x^3))$ (c) $e^{\sin^2 x}$

(c)
$$e^{\sin^2 x}$$

Differentiate $f(x) = x^{-2}$ from first principles. 2

Differentiate with respect to x, simplifying your answers, 3

(a)
$$\ln \left(\frac{a-x}{a+x} \right)^{1/3}$$
 (b) $e^{2\ln 3x}$ (c) $\cos^4 x - \sin^4 x$

(b)
$$e^{2\ln 3x}$$

(c)
$$\cos^4 x - \sin^4 x$$

4 Given that $f(x) = \frac{3x + 5a}{x^2 - a^2}$, find the values of a for which f'(12) = 0.

If $y = e^{-x}(ax + b)$, and y satisfies the differential equation

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0 \text{ for all } a \text{ and } b, \text{ find the values for } p \text{ and } q.$$

- 6 Differentiate the following functions with respect to x.
 - (a) $\cos(\sin(ax))$ (b) $\frac{x^3}{e^x e^{-x}}$ (c) $\tan^{-1}(e^{-x^3})$
 - (d) $\int_0^\infty y e^{-xy^2} dy$, where x and y are independent variables and x > 0
- 7 Let $f(x) = x \ln(1+x) \frac{x^2}{2(1+x)}$, where x > 0. Find f'(x) and hence, or otherwise, show that, when x > 0, $x > \ln(1+x) + \frac{x^2}{2(1+x)}$. [OCR (Cambridge), 1987]
- 8 Differentiate with respect to x:
 - (a) $1 + \csc 2x \frac{2(\cos^2 x \sin^2 x)}{\sin 4x}$
 - (b) $\cos \{ \tan^{-1}(x^2) \}$
 - (c) $\sin(e^x |x|)$
- 9 (i) By considering $(1 + x + x^2 + \cdots + x^n)(1 x)$ show that, if $x \neq 1$,

$$1 + x + x^2 + \dots + x^n = \frac{(1 - x^{n+1})}{1 - x}$$

(ii) By differentiating both sides and setting x = -1 show that

$$1-2+3-4+\cdots+(-1)^{n-1}n$$

takes the value $-\frac{n}{2}$ if *n* is even and the value $\frac{(n+1)}{2}$ if *n* is odd.

(iii) Show that

$$1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2 = (-1)^{n-1}(An^2 + Bn)$$

where the constants A and B are to be determined. [OCR (STEP), 1995]

- **10** Differentiate from first principles:
 - (a) $|x^3|$ (b) $x \sin^2 x$

Revision

- 1 Given that $y = 3x^4 4x^3 12x^2$ find $\frac{dy}{dx}$ in factorised form.
- 2 If $f(x) = x^{1/3} + \frac{1}{2x 1}$ find f'(x).

Find $\frac{dv}{dt}$ if:

(a)
$$v = 4t(t^2 - 1)^3$$
 (b) $v = t\sqrt{2 - t}$

- A curve is given by $y = \frac{x^2 5x + 4}{x}$ for x > 0. Show that $\frac{dy}{dx} = 1 \frac{4}{x^2}$.
- Differentiate the following with respect to t.

- (a) $e^{2t}\cos t$ (b) $\sin(t^3+4)$ (c) $\frac{\ln t}{t}$ (d) $\ln(1-\sin^2 t)$
- For $y = x(1 + 2x)^3$ use the product rule to find an expression for $\frac{dy}{dx}$, simplifying your answer as far as possible.
- Given that $y = \ln \sqrt{1 + x^2}$ show that $\frac{dy}{dx} = \frac{x}{1 + x^2}$.
- Using the quotient rule, differentiate $y = \frac{e^x}{1 + e^{-x}}$.
- Given that $y = \sin^{-1} 4x$, show that $\frac{dy}{dx} = \frac{4}{\sqrt{1 16x^2}}$.
- 10 Show that the result of differentiating $\sqrt{x} + \frac{1}{\sqrt{x}}$ with respect to x may be written in the form $\frac{x-1}{2x\sqrt{x}}$.
- 11 Find the derivatives of the following functions.
 - (a) $\sin 5x$

- (b) $\tan 0.5x$ (c) e^{3x} (d) $(1+x^2)^4$
- (e) $\ln(1+x^3)$ (f) $\cos^{-1}(2x)$
- 12 Use the quotient rule to differentiate the function $f(x) = \frac{x^2}{1 x^2}$.
- 8.2 Increasing and decreasing functions; rates of change; tangents and normals; maxima, minima and stationary points; points of inflexion; optimisation problems

Velocity
$$v = \frac{\mathrm{d}x}{\mathrm{d}t}$$
, acceleration $a = \frac{\mathrm{d}v}{\mathrm{d}t}$

At a stationary point $\frac{dy}{dx} = 0$.

For a maximum, $\frac{d^2y}{dx^2} < 0$; for a minimum, $\frac{d^2y}{dx^2} > 0$.

At a point of inflexion $\frac{d^2y}{dx^2} = 0$ and changes sign as x moves across the point.