Name:

Mathematics IB HL Test 7 Calculus I

March 2, 2021

 $1~{\rm hour}~30~{\rm minutes}$

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Calculators are **not allowed** for this examination paper.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [72 marks].
- Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to **show all working**.
- Write your solutions in the space provided.

1. [Maximum mark: 4]

Find the following limits:

(i)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 + 2x - 8}$$

(ii) $\lim_{x \to 0} \frac{x^2 - x}{\sin 3x}$

2. [Maximum mark: 5]

Show from **first principles** that the derivative of $y = \sqrt{x} + x$ is given by $\frac{dy}{dx} = \frac{1}{2\sqrt{x}} + 1$.

3. [Maximum mark: 6]

Find the area of the triangle enclosed by the tangent to the curve $y = \frac{\arctan x}{x}$ at x = 1 and the axes.

4. [Maximum mark: 5]

Value of f(x), f'(x), g(x) and g'(x) for some values of x are displayed in the table below:

x	f(x)	f'(x)	g(x)	g'(x)
1	2	1	4	3
2	3	4	1	2
3	1	3	2	4
4	4	2	3	1

Let p(x) = f(g(x)) and q(x) = f(x)g(x). Find p'(1) and q'(p(1)).

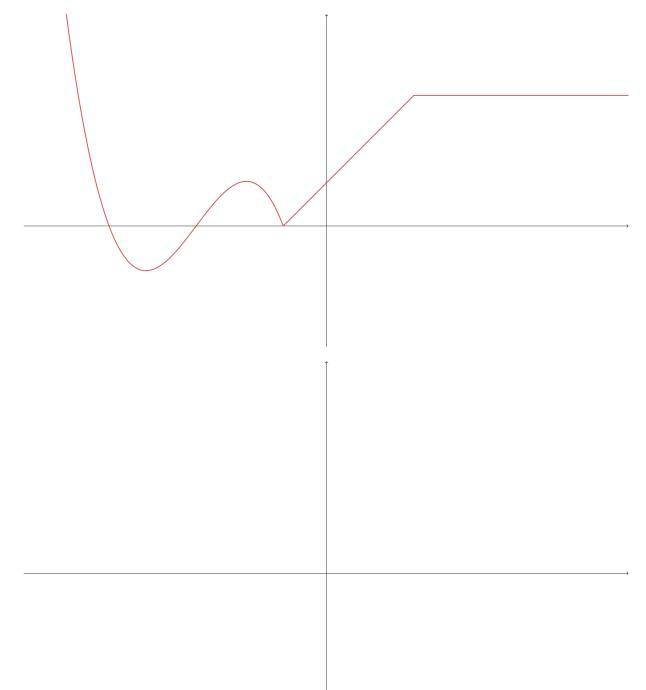
5. [Maximum mark: 5]

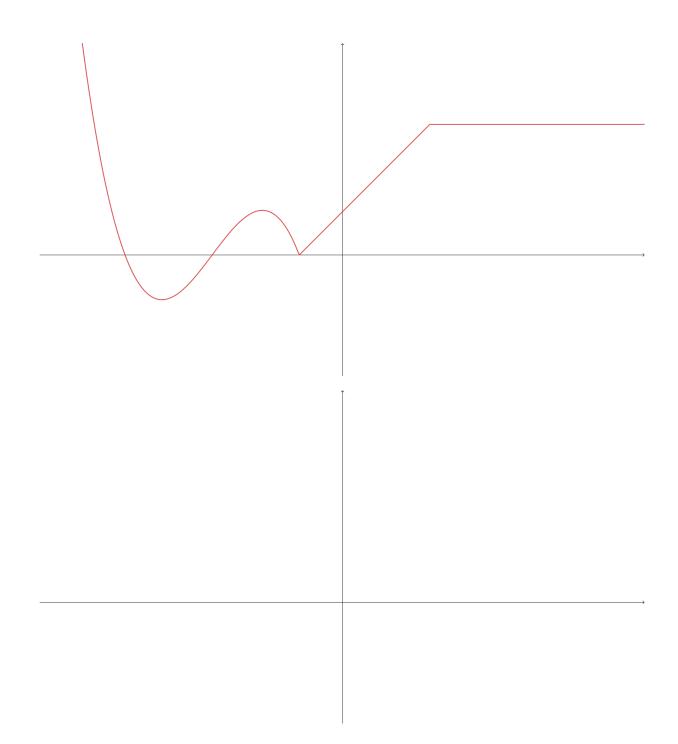
Consider the curve $x^2 + y^3 = 9$. Find the points on the curve at which the tangents are:

- (i) horizontal,
- (ii) vertical.

6. [Maximum mark: 8]

The diagrams below show two copies of the graph of y = f(x). On the axis below draw the graph of y = f'(x) and y = F(x), where F'(x) = f(x) and F(0) = 0.





7. [Maximum mark: 6]

Bolzano's Theorem states that if a continuous function is defined on the interval [a, b] and f(a) and f(b) have opposite signs, then f(x) has a zero in the interval [a, b].

Consider the function $f(x) = x^3 + x^2 + 2x + 1$.

(a) Show that f(x) = 0 for some $x \in [-1, 0]$.

[3 points]

(b) Show that f(x) is increasing for all x, and hence deduce the number of real solutions to the equation f(x) = 0. Justify your answer. [3 points]

8. [Maximum mark: 4]

Find equations of the two possible tangents to the curve $y = x^2 + x$ from the point (0, -4).

SECTION B

Answer all questions on separate sheets.

9. [Maximum mark: 13]

Consider the function $f(x) = \frac{x^2 + x - 2}{x - 2}$ with $x \neq 2$.

a) Find the coordinates of points where the graph $y = f(x)$ intersects the axes.	$[3 \ points]$

- b) Find all the asymptotes of the graph of y = f(x) [3 points]
- c) Find f'(x) and hence find the coordinates of any stationary points and classify these points. [5 points]

d) Sketch the graph of
$$y = f(x)$$
. [2 points]

10. [Maximum mark: 16]

Let $f(x) = x\sqrt{9 - x^2} + 2\arcsin(\frac{x}{3})$.

a) By considering both terms of the function, find the largest possible domain D for the function f. [2 points] For the following parts it is assumed that $x \in D$.

b) Find f'(x) in simplified form and hence find the x-coordinate of the maximum point of the graph of y = f(x). Justify that it is a maximum. [7 points]

c) Show that $f''(x) = \frac{x(2x^2 - 25)}{(9 - x^2)\sqrt{9 - x^2}}$ and hence find coordinates of any points of inflexion of the graph of y = f(x). Justify your answer. [7 points]