1. A curve *C* is defined implicitly by $xe^y = x^2 + y^2$. Find the equation of the tangent to *C* at the point (1, 0).

(Total 7 marks)

2. Find the equation of the normal to the curve $5xy^2 - 2x^2 = 18$ at the point (1, 2).

(Total 7 marks)

- 3. The curve *C* has equation $y = \frac{1}{8}(9+8x^2-x^4)$.
 - (a) Find the coordinates of the points on C at which $\frac{dy}{dx} = 0$.
 - (b) The tangent to C at the point P(1, 2) cuts the x-axis at the point T. Determine the coordinates of T.
- (4)

(4)

(c) The normal to *C* at the point P cuts the *y*-axis at the point N. Find the area of triangle PTN.

(7) (Total 15 marks) 4. The function f is defined by $f(x) = e^{x^2 - 2x - 1.5}$.

(a) Find
$$f'(x)$$
.

(2)

(b) You are given that $y = \frac{f(x)}{x-1}$ has a local minimum at x = a, a > 1. Find the value of *a*.

(6) (Total 8 marks)

5. Find the equation of the normal to the curve $x^3y^3 - xy = 0$ at the point (1, 1).

(Total 7 marks)

6. The point P, with coordinates (p, q), lies on the graph of $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$, a > 0. The tangent to the curve at P cuts the axes at (0, m) and (n, 0). Show that m + n = a.

(Total 8 marks)

7.	Consider $f(x) = \frac{x^2 - 5x + 4}{x^2 + 5x + 4}$.		
	(a)	Find the equations of all asymptotes of the graph of <i>f</i> .	(4)
	(b)	Find the coordinates of the points where the graph of f meets the x and y axes.	(2)
	(c)	Find the coordinates of	
		(i) the maximum point and justify your answer;	
		(ii) the minimum point and justify your answer.	(10)
	(d)	Sketch the graph of <i>f</i> , clearly showing all the features found above.	(3) (Total 19 marks)

8. The normal to the curve $xe^{-y} + e^{y} = 1 + x$, at the point $(c, \ln c)$, has a y-intercept $c^{2} + 1$. Determine the value of c. (Total 7 marks)

9. The line y = m(x - m) is a tangent to the curve (1 - x)y = 1. Determine *m* and the coordinates of the point where the tangent meets the curve.

(Total 7 marks)

IB Questionbank Mathematics Higher Level 3rd edition

10. The diagram below shows a sketch of the gradient function f'(x) of the curve f(x).

On the graph below, sketch the curve y = f(x) given that f(0) = 0. Clearly indicate on the graph any maximum, minimum or inflexion points.

(Total 5 marks)

11. A normal to the graph of $y = \arctan(x - 1)$, for x > 0, has equation y = -2x + c, where $c \in \mathbb{R}$. Find the value of *c*.

(Total 6 marks)