
1. Given \triangle ABC, with lengths shown in the diagram below, find the length of the line segment [CD].

(Total 5 marks)

 In the right circular cone below, O is the centre of the base which has radius 6 cm. The points B and C are on the circumference of the base of the cone. The height AO of the cone is 8 cm and the angle BÔC is 60°.

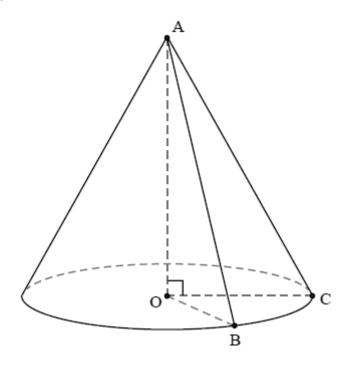


diagram not to scale

Calculate the size of the angle \hat{BAC} .

(Total 6 marks)

(Total 6 marks)

- 4. Triangle ABC has AB = 5 cm, BC = 6 cm and area 10 cm².
 - (a) Find $\sin \hat{B}$.
 - (b) **Hence**, find the two possible values of AC, giving your answers correct to two decimal places.

(4) (Total 6 marks)

(2)

- 5. A triangle has sides of length $(n^2 + n + 1)$, (2n + 1) and $(n^2 1)$ where n > 1.
 - (a) Explain why the side $(n^2 + n + 1)$ must be the longest side of the triangle.
 - (b) Show that the largest angle, θ , of the triangle is 120°.

(5) (Total 8 marks)

(3)

6. In triangle ABC, AB = 9 cm, AC = 12 cm, and \hat{B} is twice the size of \hat{C} .

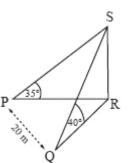
Find the cosine of \hat{C} .

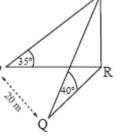
(Total 5 marks)

The above three dimensional diagram shows the points P and Q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground. The angles of elevation of the top S of the flagpole from P and Q are respectively 35° and 40° , and PQ = 20 m.

Determine the height of the flagpole.

Consider triangle ABC with $BAC = 37.8^{\circ}$, AB = 8.75 and BC = 6. 8. Find AC.


In a triangle ABC, $\hat{A} = 35^{\circ}$, BC = 4 cm and AC = 6.5 cm. Find the possible values of \hat{B} and 9. the corresponding values of AB. (Total 7 marks)


The lengths of the sides of a triangle ABC are x - 2, x and x + 2. The largest angle is 120°. 10.

Find the value of *x*. (a)

(b) Show that the area of the triangle is
$$\frac{15\sqrt{3}}{4}$$
. (3)

(c) Find
$$\sin A + \sin B + \sin C$$
 giving your answer in the form $\frac{p\sqrt{q}}{r}$ where $p, q, r \in \mathbb{Z}$.
(4)
(Total 13 marks)

(Total 7 marks)

(Total 8 marks)

(6)

3

- **11.** A farmer owns a triangular field ABC. The side [AC] is 104 m, the side [AB] is 65 m and the angle between these two sides is 60°.
 - (a) Calculate the length of the third side of the field.
 - (b) Find the area of the field in the form $p\sqrt{3}$, where p is an integer.

Let D be a point on [BC] such that [AD] bisects the 60° angle. The farmer divides the field into two parts by constructing a straight fence [AD] of length x metres.

(c) (i) Show that the area o the smaller part is given by $\frac{65x}{4}$ and find an expression for the area of the larger part.

(ii) Hence, find the value of x in the form $q\sqrt{3}$, where q is an integer.

(8)

(3)

(3)

(d) Prove that
$$\frac{BD}{DC} = \frac{5}{8}$$
.

(6) (Total 20 marks)