4. [Maximum mark: 6]

A particle moves in a straight line. The velocity, $v \, \text{ms}^{-1}$, of the particle at time t seconds is given by $v(t) = t \sin t - 3$, for $0 \le t \le 10$.

The following diagram shows the graph of v.

(a) Find the smallest value of *t* for which the particle is at rest.

[2]

(b) Find the total distance travelled by the particle.

[2]

(c) Find the acceleration of the particle when t = 7.

[2]

6. [Maximum mark: 6]

A particle moves along a horizontal line such that at time t seconds, $t \ge 0$, its acceleration a is given by a = 2t - 1. When t = 6, its displacement s from a fixed origin O is 18.25 m. When t = 15, its displacement from O is 922.75 m. Find an expression for s in terms of t.

7. [Maximum mark: 5]

A point P moves in a straight line with velocity $v \, \mathrm{ms}^{-1}$ given by $v(t) = \mathrm{e}^{-t} - 8t^2 \mathrm{e}^{-2t}$ at time t seconds, where $t \ge 0$.

(a) Determine the first time t_1 at which P has zero velocity.

[2]

- (b) (i) Find an expression for the acceleration of P at time t.
 - (ii) Find the value of the acceleration of P at time t_1 .

[3]

4. [Maximum mark: 7]

A particle moves along a straight line. Its displacement, s metres, at time t seconds is given by $s = t + \cos 2t$, $t \ge 0$. The first two times when the particle is at rest are denoted by t_1 and t_2 , where $t_1 < t_2$.

- (a) Find t_1 and t_2 . [5]
- (b) Find the displacement of the particle when $t = t_1$. [2]

5. [Maximum mark: 5]

A particle moves in a straight line such that at time t seconds $(t \ge 0)$, its velocity v, in ms^{-1} , is given by $v = 10te^{-2t}$. Find the exact distance travelled by the particle in the first half-second.

10. [Maximum mark: 16]

A particle P moves along the x-axis. The velocity of P is $v \, {\rm m \, s}^{-1}$ at time t seconds, where $v(t) = 4 + 4t - 3t^2$ for $0 \le t \le 3$. When t = 0, P is at the origin O.

- (a) (i) Find the value of t when P reaches its maximum velocity.
 - (ii) Show that the distance of P from O at this time is $\frac{88}{27}$ metres. [7]
- (b) Sketch a graph of v against t, clearly showing any points of intersection with the axes. [4]
- (c) Find the total distance travelled by P. [5]