### WHAT YOU NEED TO KNOW

• The rules of exponents:

$$\bullet \quad a^m \times a^n = a^{m+n}$$

$$\bullet \quad \frac{a^m}{a^n} = a^{m-n}$$

$$\bullet \qquad (a^m)^n = a^{mn}$$

$$\bullet \quad a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$\bullet \quad a^{-n} = \frac{1}{a^n}$$

• 
$$a^n \times b^n = (ab)^n$$

$$\bullet \quad \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

- The relationship between exponents and logarithms:
  - $a^x = b \iff x = \log_a b$  where a is called the base of the logarithm

• 
$$\log_a a^x = x$$

$$\bullet \quad a^{\log_a x} = x$$

• The rules of logarithms:

• 
$$\log_a x + \log_a y = \log_a xy$$

• 
$$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$$

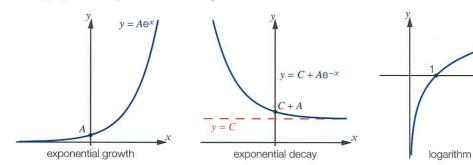
• 
$$k \log_a x = \log_a x^k$$

• 
$$\log_a\left(\frac{1}{x}\right) = -\log_a x$$

• 
$$\log_a 1 = 0$$

- The change of base rule:  $\log_b a = \frac{\log_c a}{\log_c b}$
- There are two common abbreviations for logarithms to particular bases:
  - $\log_{10} x$  is often written as  $\log x$
  - $\log_{e} x$  is often written as  $\ln x$

• The graphs of exponential and logarithmic functions:



 $y = \log x$ 

# 4

### EXAM TIPS AND COMMON ERRORS

- You must know what you cannot do with logarithms:
  - $\log(x + y)$  cannot be simplified; it is **not**  $\log x + \log y$
  - $\log(e^x + e^y)$  cannot be simplified; it is **not** x + y
  - $(\log x)^2$  is **not**  $2\log x$ , whereas  $\log x^2 = 2\log x$
  - $e^{2 + \log x} = e^2 e^{\log x} = e^2 x \text{ not } e^2 + x$

## 2.1 SOLVING EXPONENTIAL EQUATIONS

### **WORKED EXAMPLE 2.1**

Solve the equation  $4 \times 5^{x+1} = 3^x$ , giving your answer in the form  $\frac{\log a}{\log b}$ 

$$\log(4 \times 5^{x+1}) = \log(3^x)$$

$$\Leftrightarrow \log 4 + \log(5^{x+1}) = \log(3^x)$$

Since the unknown is in the power, we take logarithms of each side.

logarithms of each side.

We then use the rules of logarithms to simplify the expression. First use

 $\log(ab) = \log a + \log b$ 



A common mistake is to say that  $\log(4 \times 5^{x+1}) = \log 4 \times \log(5^{x+1})$ .

$$\Leftrightarrow \log 4 + (x+1)\log 5 = x\log 3$$

 $\bigcirc$  We can now use  $\log a^k = k \log a$  to get rid of the powers.

$$\Leftrightarrow \log 4 + x \log 5 + \log 5 = x \log 3$$
$$\Leftrightarrow x \log 3 - x \log 5 = \log 4 + \log 5$$

Expand the brackets and collect the terms containing 
$$x$$
 on one side.

$$\Leftrightarrow x(\log 3 - \log 5) = \log 4 + \log 5$$

$$\Leftrightarrow x = \frac{\log 4 + \log 5}{\log 3 - \log 5}$$
Use the rules of logarithms to write the solution in the correct form:

$$\Leftrightarrow x = \frac{\log 20}{\log \left(\frac{3}{5}\right)}$$

$$\log a + \log b = \log ab$$
$$\log a - \log b = \log \left(\frac{a}{b}\right)$$

# Practice questions 2.1

- 1. Solve the equation  $5^{3x+1} = 15$ , giving your answer in the form  $\frac{\log a}{\log b}$  where a and b are integers.
- **2.** Solve the equation  $3^{2x+1} = 4^{x-2}$ , giving your answer in the form  $\frac{\log p}{\log q}$  where p and q are rational numbers.
- 3. Solve the equation  $3 \times 2^{x-3} = \frac{1}{5^{2x}}$ , giving your answer in the form  $\frac{\log p}{\log q}$  where p and q are rational numbers.

# 2.2 SOLVING DISGUISED QUADRATIC EQUATIONS

### **WORKED EXAMPLE 2.2**

Find the exact solution of the equation  $3^{2x+1} - 11 \times 3^x = 4$ .

$$3^{2x+1}-11\times 3^x=4$$

$$\Leftrightarrow$$
 3×3<sup>2x</sup> -11×3<sup>x</sup> = 4

$$\Leftrightarrow 3 \times (3^x)^2 - 11 \times 3^x = 4$$

quadratic equation.

We need to find a substitution to turn this into a

First, express  $3^{2x+1}$  in terms of  $3^x$ :

$$3^{2x+1} = 3^{2x} \times 3^1 = 3 \times (3^x)^2$$



Look out for an  $a^{2x}$  term, which can be rewritten as  $(a^x)^2$ .

Let  $y = 3^x$ . Then

$$3y^2 - 11y - 4 = 0$$

$$\Leftrightarrow (3y+1)(y-4)$$

$$\Leftrightarrow y = -\frac{1}{3} \text{ or } y = 4$$

$$\therefore 3^x = -\frac{1}{3} \text{ or } 3^x = 4$$

 $3^x = -\frac{1}{3}$  is impossible since  $3^x > 0$  for all x.

$$3^{x} = 4$$

$$\Leftrightarrow \log 3^x = \log 4$$

$$\Leftrightarrow x \log 3 = \log 4$$

$$\Leftrightarrow x = \frac{\log 4}{\log 3}$$

After substituting y for  $3^x$ , this becomes a standard quadratic equation, which can be factorised and solved.



Disguised quadratic equations may also be encountered when solving trigonometric equations, which is covered in Chapter 6.

Remember that  $y = 3^x$ .



With disguised quadratic equations, often one of the solutions is impossible.

Since x is in the power, we take logarithms of both sides. We can then use  $\log a^k = k \log a$  to get rid of the power.

## Practice questions 2.2



**4.** Solve the equation  $2^{2x} - 5 \times 2^x + 4 = 0$ .



**5.** Find the exact solution of the equation  $e^x - 6e^{-x} = 5$ .



**6.** Solve the simultaneous equations  $e^{x+y} = 6$  and  $e^x + e^y = 5$ .

### 2.3 LAWS OF LOGARITHMS

#### **WORKED EXAMPLE 2.3**

If  $x = \log a$ ,  $y = \log b$  and  $z = \log c$ , write 2x + y - 0.5z + 2 as a single logarithm.

$$2\log a + \log b - 0.5\log c + 2$$
  
=  $\log a^2 + \log b - \log c^{0.5} + 2$ 

We need to rewrite the expression as a single logarithm. In order to apply the rules for combining logarithms, each log must have no coefficient in front of it. So we first need to use  $k \log x = \log x^k$ .

$$= \log a^2 b - \log c^{0.5} + 2$$
$$= \log \left( \frac{a^2 b}{\sqrt{c}} \right) + 2$$

We can now use 
$$\log x + \log y = \log(xy)$$
 and 
$$\log x - \log y = \log\left(\frac{x}{y}\right).$$

$$= \log\left(\frac{a^2b}{\sqrt{c}}\right) + \log 100$$
$$= \log\left(\frac{100a^2b}{\sqrt{c}}\right)$$

We also need to write 2 as a logarithm so that it can then be combined with the first term. Since  $10^2 = 100$ , we can write 2 as  $\log 100$ .



Remember that log on its own is taken to mean  $\log_{10}$ .

# Practice questions 2.3

- 7. Given  $x = \log a$ ,  $y = \log b$  and  $z = \log c$ , write 3x 2y + z as a single logarithm.
- **8.** Given  $a = \log x$ ,  $b = \log y$  and  $c = \log z$ , find an expression in terms of a, b and c

for 
$$\log \left( \frac{10xy^2}{\sqrt{z}} \right)$$

- **9.** Given that  $\log a + 1 = \log b^2$ , express a in terms of b.
- **10.** Given that  $\ln y = 2 + 4 \ln x$ , express y in terms of x.



**11.** Consider the simultaneous equations

$$e^{2x} + e^y = 800$$

$$3\ln x + \ln y = 5$$

- (a) For each equation, express y in terms of x.
- (b) Hence solve the simultaneous equations.

# 2.4 SOLVING EQUATIONS INVOLVING LOGARITHMS

### **WORKED EXAMPLE 2.4**



Solve the equation  $4\log_4 x = 9\log_x 4$ .

$$\log_x 4 = \frac{\log_4 4}{\log_4 x} = \frac{1}{\log_4 x}$$

Therefore

$$4\log_4 x = 9\log_x 4$$

$$\Leftrightarrow 4\log_4 x = 9 \times \frac{1}{\log_4 x}$$

$$\Leftrightarrow 4(\log_4 x)^2 = 9$$

$$\Leftrightarrow (\log_4 x)^2 = \frac{9}{4}$$

$$\log_4 x = \frac{3}{2}$$
 or  $\log_4 x = -\frac{3}{2}$ 

So 
$$x=4^{\frac{3}{2}}$$
 or  $x=4^{-\frac{3}{2}}$   
=8 = $\frac{1}{8}$ 

We want to have logarithms involving just one base so that we can apply the rules of logarithms.

Here we use the change of base rule to turn logs with base x into logs with base 4. (Alternatively, we could have turned them all into base x instead.)

O— Multiply through by  $\log_4 x$  to get the log terms together.



Make sure you use brackets to indicate that the whole of  $\log_4 x$  is being squared, not just x;  $(\log_4 x)^2$  is **not**  $2\log_4 x$ , but  $\log_4 x^2$  would be.

Take the square root of both sides; don't forget the negative square root.

Use  $\log_a b = x \Leftrightarrow b = a^x$  to 'undo' the logs.

# Practice questions 2.4



**12.** Solve the equation  $\log_4 x + \log_4 (x - 6) = 2$ .



**13.** Solve the equation  $2\log_2 x - \log_2(x+1) = 3$ , giving your answers in simplified surd form.



Make sure you check your answers by substituting them into the original equation.



**14.** Solve the equation  $25 \log_2 x = \log_x 2$ .



**15.** Solve the equation  $\log_4(4-x) = \log_{16}(9x^2 - 10x + 1)$ .

### 2.5 PROBLEMS INVOLVING EXPONENTIAL FUNCTIONS

#### **WORKED EXAMPLE 2.5**

When a cup of tea is made, its temperature is 85°C. After 3 minutes the tea has cooled to 60°C. Given that the temperature T (°C) of the cup of tea decays exponentially according to the function  $T = A + Ce^{-0.2t}$ , where t is the time measured in minutes, find:

- (a) the values of A and C (correct to three significant figures)
- (b) the time it takes for the tea to cool to 40°C.
- (a) When t = 0: 85 = A + C ...(1) When t = 3:  $60 = A + Ce^{-0.6}$  ...(2) (1) - (2) gives  $25 = (1 - e^{-0.6})$

So 
$$C = \frac{25}{1 - e^{-0.6}} = 55.4 (3SF)$$

Then, from (1),

$$A = 85 - C = 85 - 55.4 = 29.6 (35F)$$

(b) When T = 40:

$$29.6 + 55.4e^{-0.2t} = 40$$

$$\Rightarrow e^{-0.2t} = \frac{40 - 29.6}{55.4}$$

$$\Rightarrow \ln(e^{-0.2t}) = \ln\left(\frac{40 - 29.6}{55.4}\right)$$

$$\Rightarrow -0.2t = \ln\left(\frac{40 - 29.6}{55.4}\right)$$

$$\Rightarrow t = 8.36 \text{ minutes}$$

Substitute the given values for T (temperature) and t (time) into  $T = A + Ce^{-0.2t}$ , remembering that  $e^0 = 1$ .

- Note that *A* is the long-term limit of the temperature, which can be interpreted as the temperature of the room.
- $\bigcirc$  Now we can substitute for T, A and C.
  - Since the unknown t is in the power, we take logarithms of both sides and then 'cancel' e and In using  $\log_a(a^x) = x$ .



Remember that In means  $log_e$ .

## Practice questions 2.5

- **16.** The amount of reactant, V(grams), in a chemical reaction decays exponentially according to the function  $V = M + Ce^{-0.32t}$ , where t is the time in seconds since the start of the reaction. Initially there was  $4.5 \, \text{g}$  of reactant, and this had decayed to  $2.6 \, \text{g}$  after 7 seconds.
  - (a) Find the value of C.
  - (b) Find the value that the amount of reactant approaches in the long term.
- 17. A population of bacteria grows according to the model  $P = Ae^{kt}$ , where P is the size of the population after t minutes. Given that after 2 minutes there are 200 bacteria and after 5 minutes there are 1500 bacteria, find the size of the population after 10 minutes.

# Mixed practice 2

- **1.** Solve the equation  $3 \times 9^x 10 \times 3^x + 3 = 0$ .
- **2.** Find the exact solution of the equation  $2^{3x+1} = 5^{5-x}$ .
- **3.** Solve the simultaneous equations

$$\ln x^2 + \ln y = 15$$

$$\ln x + \ln y^3 = 10$$

- **4.** Given that  $y = \ln x \ln(x+2) + \ln(x^2-4)$ , express x in terms of y.
- **5.** The graph with equation  $y = 4 \ln(x a)$  passes through the point (5,  $\ln 16$ ). Find the value of a.
- **6.** (a) An economic model predicts that the demand, D, for a new product will grow according to the equation  $D = A Ce^{-0.2t}$ , where t is the number of days since the product launch. After 10 days the demand is 15 000 and it is increasing at a rate of 325 per day.
  - (i) Find the value of C.
  - (ii) Find the initial demand for the product.
  - (iii) Find the long-term demand predicted by this model.
  - (b) An alternative model is proposed, in which the demand grows according to the formula  $D = B \ln \left( \frac{t+10}{5} \right)$ . The initial demand is the same as that for the first model.
    - (i) Find the value of B.
    - (ii) What is the long-term prediction of this model?
  - (c) After how many days will the demand predicted by the second model become larger than the demand predicted by the first model?

# Going for the top 2

- **1.** Find the exact solution of the equation  $2^{3x-4} \times 3^{2x-5} = 36^{x-2}$ , giving your answer in the form  $\frac{\ln p}{\ln q}$  where p and q are integers.
- **2.** Given that  $\log_a b^2 = c^2$  and  $\log_b a = c + 1$ , express a in terms of b.
- **3.** In a physics experiment, Maya measured how the force, F, exerted by a spring depends on its extension, x. She then plotted the values of  $a = \ln F$  and  $b = \ln x$  on a graph, with b on the horizontal axis and a on the vertical axis. The graph was a straight line, passing through the points (2, 4.5) and (4, 7.2). Find an expression for F in terms of x.