1. Given that $\frac{z}{z+2} = 2 - i$, $z \in \mathbb{C}$, find z in the form a + ib.

(Total 4 marks)

2. Given that $(a + bi)^2 = 3 + 4i$ obtain a pair of simultaneous equations involving a and b. Hence find the two square roots of 3 + 4i.

(Total 7 marks)

3. Solve the simultaneous equations

$$iz_1 + 2z_2 = 3$$
$$z_1 + (1 - i)z_2 = 4$$

giving z_1 and z_2 in the form x + iy, where x and y are real.

(Total 9 marks)

4. Consider the complex numbers z = 1 + 2i and w = 2 + ai, where $a \in \mathbb{R}$.

Find a when

(a)
$$|w| = 2|z|$$
;

(3)

(b) Re (zw) = 2 Im(zw).

(3)

(Total 6 marks)

5. If z is a non-zero complex number, we define L(z) by the equation

$$L(z) = \ln |z| + i \arg(z), 0 \le \arg(z) \le 2\pi.$$

(a) Show that when z is a positive real number, $L(z) = \ln z$.

(2)

- (b) Use the equation to calculate
 - (i) L(-1);
 - (ii) L(1-i);
 - (iii) L(-1 + i).

(5)

(c) Hence show that the property $L(z_1z_2) = L(z_1) + L(z_2)$ does not hold for all values of z_1 and z_2 .

(2)

(Total 9 marks)

6. Given that $|z| = \sqrt{10}$, solve the equation $5z + \frac{10}{z^*} = 6 - 18i$, where z^* is the conjugate of z.

(Total 7 marks)