- 1. Given that $\frac{z}{z+2} = 2 i, z \in \mathbb{C}$, find z in the form a + ib.
- 2. Given that $(a + bi)^2 = 3 + 4i$ obtain a pair of simultaneous equations involving *a* and *b*. Hence find the two square roots of 3 + 4i.
- 3. Solve the simultaneous equations
- $iz_1 + 2z_2 = 3$
 $z_1 + (1 i)z_2 = 4$

giving z_1 and z_2 in the form x + iy, where x and y are real.

4. Consider the complex numbers z = 1 + 2i and w = 2 + ai, where $a \in \mathbb{R}$.

Find *a* when

- (a) |w| = 2|z|;
- (b) Re (zw) = 2 Im(zw).

5. If z is a non-zero complex number, we define L(z) by the equation

 $L(z) = \ln |z| + i \arg (z), 0 \le \arg (z) \le 2\pi.$

- (a) Show that when z is a positive real number, $L(z) = \ln z$.
- (b) Use the equation to calculate
 - (i) L(-1);
 - (ii) L(1-i);
 - (iii) L(-1 + i).
- (c) Hence show that the property $L(z_1z_2) = L(z_1) + L(z_2)$ does not hold for all values of z_1 and z_2 .
- 6. Given that $|z| = \sqrt{10}$, solve the equation $5z + \frac{10}{z^*} = 6 18i$, where z^* is the conjugate of z.

(Total 7 marks)

1

(Total 7 marks)

(Total 9 marks)

(Total 4 marks)

(3)

(3)

(Total 6 marks)

(2)

(5)

(2) (Total 9 marks)