1. [7 marks]

A continuous random variable *X* has the probability density function *f* given by

$$f(x) = \begin{cases} \frac{\pi x}{36} \sin\left(\frac{\pi x}{6}\right), & 0 \le x \le 6\\ 0, & \text{otherwise} \end{cases}$$

Find $P(0 \le X \le 3)$.

2a. [2 marks]

A continuous random variable X has a probability density function given by

 $f(x) = \begin{cases} \arccos x & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$

The median of this distribution is *m*.

Determine the value of *m*.

2b. [4 marks]

Given that $P(|X - m| \le a) = 0.3$, determine the value of *a*.

3a. [5 marks]

A continuous random variable *X* has the probability density function *f* given by

$$f(x) = \begin{cases} \frac{x}{\sqrt{x^2 + k^3}} & 0 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$

where $k \in \mathbb{R}^+$.

Show that $\sqrt{16 + k} - \sqrt{k} = \sqrt{k}\sqrt{16 + k}$. **3b.** [2 marks]

Find the value of *k*.

4a. [2 marks]

A continuous random variable X has the probability density function f_n given by

 $f_n(x) = \begin{cases} \{n+1x^n, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$ where $n \in \mathbb{R}, n \ge 0$. Show that $\mathbb{E}(X) = \frac{n+1}{n+2}$. **4b.** [4 marks] Show that $\operatorname{Var}(X) = \frac{n+1}{(n+2)^2(n+3)}$.

5a. [1 mark]

The random variable *X* has probability density function *f* given by

 $f(x) = \begin{cases} k(\pi - \arcsin x) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$, where *k* is a positive constant.

State the mode of X. **5b.** [3 marks] Find $\int \arcsin x \, dx$. **5c.** [3 marks] Hence show that $k = \frac{2}{2+\pi}$. **5d.** [4 marks] Given that $y = \left(\frac{x^2}{2}\right) \arcsin x - \left(\frac{1}{4}\right) \arcsin x + \left(\frac{x}{4}\right) \sqrt{1 - x^2}$, show that $\frac{dy}{dx} = x \arcsin x$. **5e.** [5 marks]

 $\mathrm{E}(X) = \frac{3\pi}{4(\pi+2)}.$

6a. [3 marks]

The continuous random variable X has probability density function f given by

$$f(x) = \begin{cases} 3ax & , & 0 \le x < 0.5 \\ a(2-x) & , & 0.5 \le x < 2 \\ 0 & , & \text{otherwise} \end{cases}$$

Show that $a = \frac{2}{3}$.
6b. [3 marks]
Find P(X < 1).
6c. [7 marks]
Given that P(s < X < 0.8) = 2 × P(2s < X < 0.8), and that 0.25 < s < 0.4, find the value of s.

7a. [4 marks]

The continuous random variable *X* has a probability density function given by

$$f(x) = \begin{cases} k \sin\left(\frac{\pi x}{6}\right), & 0 \le x \le 6\\ 0, & \text{otherwise} \end{cases}$$

Find the value of *k*.

7b. [1 mark]

By considering the graph of *f* write down the mean of *X*;

7c. [1 mark]

By considering the graph of *f* write down the median of *X*;

7d. [1 mark]

By considering the graph of *f* write down the mode of *X*.

7e. [4 marks]

Show that $P(0 \le X \le 2) = \frac{1}{4}$.

7f. [2 marks]

Hence state the interquartile range of *X*.

7g. [2 marks]

Calculate $P(X \le 4 | X \ge 3)$.

8a. [2 marks]

A continuous random variable *T* has probability density function *f* defined by

$$f(t) = \begin{cases} \frac{t|\sin 2t|}{\pi}, & 0 \le t \le \pi\\ 0, & \text{otherwise} \end{cases}$$

Sketch the graph of y = f(t).

8b. [1 mark]

Use your sketch to find the mode of *T*.

8c. [2 marks]

Find the mean of *T*.

8d. [3 marks]

Find the variance of *T*.

8e. [2 marks]

Find the probability that *T* lies between the mean and the mode.

8f. [5 marks]

- (i) Find $\int_0^{\pi} f(t) dt$ where $0 \le T \le \frac{\pi}{2}$.
- (ii) Hence verify that the lower quartile of T is $\frac{\pi}{2}$.