- **1.** Consider $f(x) = 2kx^2 4kx + 1$, for $k \neq 0$. The equation f(x) = 0 has two equal roots.
 - (a) Find the value of k. (5)
 - (b) The line y = p intersects the graph of *f*. Find all possible values of *p*.

(2) (Total 7 marks)

2. Let $f(x) = 8x - 2x^2$. Part of the graph of *f* is shown below.

- (a) Find the *x*-intercepts of the graph.
- (b) (i) Write down the equation of the axis of symmetry.
 - (ii) Find the *y*-coordinate of the vertex.

(4)

(3) (Total 7 marks)

(Total 6 marks)

- 3. Let $f(x) = a(x-4)^2 + 8$.
 - (a) Write down the coordinates of the vertex of the curve of f.
 - (b) Given that f(7) = -10, find the value of *a*.
 - (c) Hence find the *y*-intercept of the curve of *f*.

4. Let f(x) = p(x - q)(x - r). Part of the graph of *f* is shown below.

The graph passes through the points (-2, 0), (0, -4) and (4, 0).

- (a) Write down the value of q and of r. (2)
- (b) Write down the **equation** of the axis of symmetry.
- (c) Find the value of *p*.

(3) (Total 6 marks)

(1)

5. The following diagram shows part of the graph of *f*, where $f(x) = x^2 - x - 2$.

- (a) Find both *x*-intercepts.
- (b) Find the *x*-coordinate of the vertex.

(4)

(2) (Total 6 marks) 6. Let $f(x) = 2x^2 + 4x - 6$.

(a) Express
$$f(x)$$
 in the form $f(x) = 2(x-h)^2 + k$.
(3)

- (b) Write down the equation of the axis of symmetry of the graph of f. (1)
- (c) Express f(x) in the form f(x) = 2(x-p)(x-q).

7. Let $f(x) = 2x^2 - 12x + 5$.

- (a) Express f(x) in the form $f(x) = 2(x-h)^2 k$. (3)
- (b) Write down the vertex of the graph of f. (2)
- (c) Write down the equation of the axis of symmetry of the graph of f. (1)
- (d) Find the *y*-intercept of the graph of f.

(e) The *x*-intercepts of *f* can be written as
$$\frac{p \pm \sqrt{q}}{r}$$
, where $p, q, r \in \mathbb{Z}$.
Find the value of *p*, of *q*, and of *r*.

(7) (Total 15 marks)

(2)

8. Part of the graph of the function $y = d(x-m)^2 + p$ is given in the diagram below. The *x*-intercepts are (1, 0) and (5, 0). The vertex is V(*m*, 2).

(Total 6 marks)

IB Questionbank Maths SL

9. Part of the graph of f(x) = (x - p) (x - q) is shown below.

The vertex is at C. The graph crosses the y-axis at B.

- (a) Write down the value of p and of q.
- (b) Find the coordinates of C.
- (c) Write down the *y*-coordinate of B.

(Total 6 marks)

10. The equation $x^2 - 2kx + 1 = 0$ has two distinct real roots. Find the set of all possible values of k.

(Total 6 marks)

11. The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k.

(Total 6 marks)

12. The diagram shows part of the graph of $y = a (x - h)^2 + k$. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

y/

2

- (a) Write down the value of
 - (i) *h*;
 - (ii) *k*.
- (b) Calculate the value of *a*.

(Total 6 marks)

- **13.** Consider the function $f(x) = 2x^2 8x + 5$.
 - (a) Express f(x) in the form $a(x-p)^2 + q$, where $a, p, q \in \mathbb{Z}$.
 - (b) Find the minimum value of f(x).

(Total 6 marks)

14. The diagram shows part of the graph with equation $y = x^2 + px + q$. The graph cuts the *x*-axis at -2 and 3.

Find the value of

- (a) *p*;
- (b) *q*.

(Total 4 marks)

15. The quadratic equation $4x^2 + 4kx + 9 = 0$, k > 0 has exactly one solution for *x*. Find the value of *k*.

(Total 4 marks)

16. The diagram shows the graph of the function $y = ax^2 + bx + c$.

Complete the table below to show whether each expression is positive, negative or zero.

Expression	positive	negative	zero
a			
С			
b^2-4ac			
b			

(Total 4 marks)

17. The diagram represents the graph of the function

- (a) Write down the values of p and q.
- (b) The function has a minimum value at the point *C*. Find the *x*-coordinate of *C*.

(Total 4 marks)

- **18.** (a) Factorize $x^2 3x 10$.
 - (b) Solve the equation $x^2 3x 10 = 0$.

(Total 4 marks)

19. The diagram shows the parabola y = (7 - x)(1 + x). The points A and C are the x-intercepts and the point B is the maximum point.

Find the coordinates of *A*, *B* and *C*.

(Total 4 marks)