Monday 28.11 [32 marks]

1. Solve the equation $\log_3 \sqrt{x} = rac{1}{2\log_2 3} + \log_3 \bigl(4x^3 \bigr)$, where x > 0. [5 marks]

Markscheme
attempt to use change the base (M1)

$$\log_3 \sqrt{x} = \frac{\log_3 2}{2} + \log_3 (4x^3)$$

attempt to use the power rule (M1)
 $\log_3 \sqrt{x} = \log_3 \sqrt{2} + \log_3 (4x^3)$
attempt to use product or quotient rule for logs, $\ln a + \ln b = \ln ab$
(M1)
 $\log_3 \sqrt{x} = \log_3 (4\sqrt{2}x^3)$
Note: The *M* marks are for attempting to use the relevant log rule and may
be applied in any order and at any time during the attempt seen.
 $\sqrt{x} = 4\sqrt{2}x^3$
 $x = 32x^6$
 $x^5 = \frac{1}{32}$ (A1)
 $x = \frac{1}{2}$ A1

[5 marks]

A function f is defined by $f(x) = rac{2x-1}{x+1}$, where $x \in \mathbb{R}, \; x
eq -1.$

The graph of y = f(x) has a vertical asymptote and a horizontal asymptote.

2a. Write down the equation of the vertical asymptote.

[1 mark]

Markscher	ne		
x=-1 ai			
[1 mark]			

2b. Write down the equation of the horizontal asymptote.

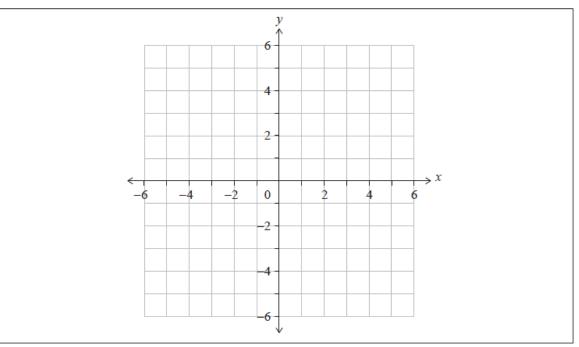
Markschemey = 2A1[1 mark]

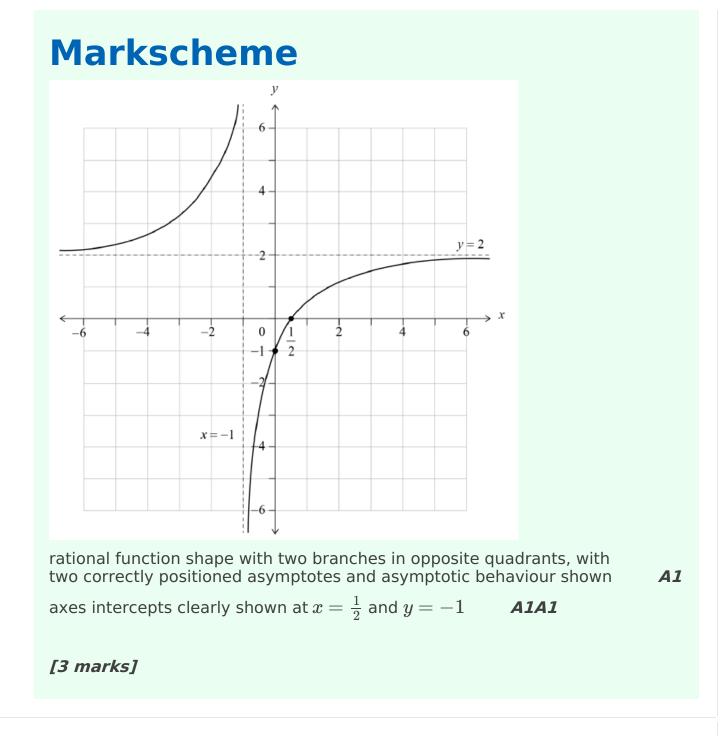
[1 mark]

[3 marks]

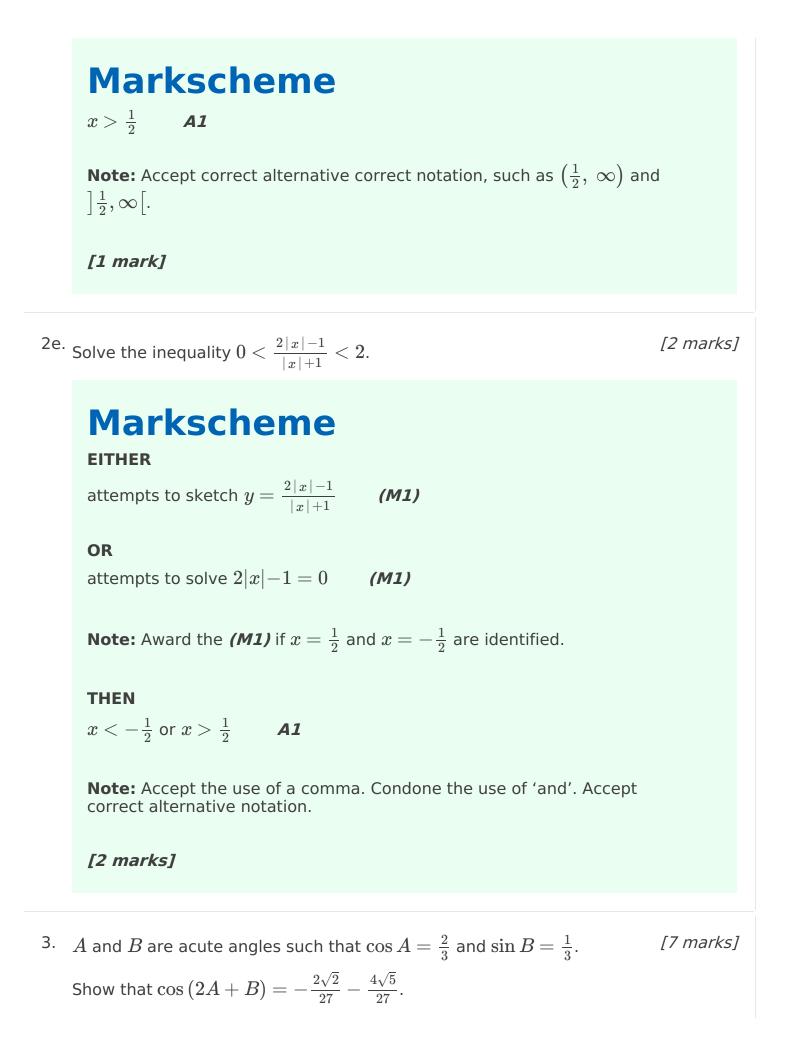
2c. On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.





2d. Hence, solve the inequality $0 < \frac{2x-1}{x+1} < 2$. [1 mark]



Markscheme

attempt to use $\cos{(2A+B)} = \cos{2A}\cos{B} - \sin{2A}\sin{B}$ (may be seen later) M1 attempt to use any double angle formulae (seen anywhere) **M1** attempt to find either $\sin A$ or $\cos B$ (seen anywhere) M1 $\cos A = \frac{2}{3} \Rightarrow \sin A \left(=\sqrt{1-\frac{4}{9}}\right) = \frac{\sqrt{5}}{3}$ (A1) $\sin B = \frac{1}{3} \Rightarrow \cos B \left(= \sqrt{1 - \frac{1}{9}} = \frac{\sqrt{8}}{3} \right) = \frac{2\sqrt{2}}{3}$ **A1** $\cos 2A \left(= 2 \cos^2 A - 1\right) = -\frac{1}{9}$ **A1** $\sin 2A \left(=2\sin A\cos A\right) = rac{4\sqrt{5}}{9}$ A1 So $\cos(2A+B) = \left(-\frac{1}{9}\right) \left(\frac{2\sqrt{2}}{3}\right) - \left(\frac{4\sqrt{5}}{9}\right) \left(\frac{1}{3}\right)$ $=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}$ AG [7 marks]

The faces of a fair six-sided die are numbered 1, 2, 2, 4, 4, 6. Let X be the discrete random variable that models the score obtained when this die is rolled.

4a. Complete the probability distribution table for X.

[2 marks]

x		
P(X = x)		

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x	1	2	4	6
P(X = x)	1	1	1	1
	6	3	3	6

A1A1

Note: Award **A1** for each correct row.

[2 marks]

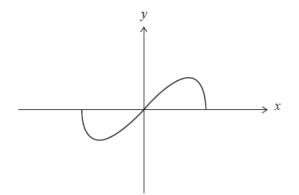
Markscheme $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{3} + 4 \times \frac{1}{3} + 6 \times \frac{1}{6}$ (M1) $= \frac{19}{6} (= 3\frac{1}{6})$ A1

Note: If the probabilities in (a) are not values between 0 and 1 or lead to E(X) > 6 award **M1A0** to correct method using the incorrect probabilities; otherwise allow **FT** marks.

[2 marks]

A function f is defined by $f(x) = x\sqrt{1-x^2}$ where $-1 \leq x \leq 1$.

The graph of y = f(x) is shown below.



5a. Show that f is an odd function.

[2 marks]



5b. The range of f is $a \leq y \leq b$, where $a, \ b \in \mathbb{R}.$ Find the value of a and the value of b.

[6 marks]

Markscheme

attempts both product rule and chain rule differentiation to find f'(x) **M1**

$$f'(x) = x \times \frac{1}{2} \times (-2x) \times (1-x^2)^{-\frac{1}{2}} + (1-x^2)^{\frac{1}{2}} \times 1 \left(= \sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}} \right)$$

$$= \frac{1-2x^2}{\sqrt{1-x^2}}$$
sets their $f'(x) = 0$ **M1**
 $\Rightarrow x = \pm \frac{1}{\sqrt{2}}$ **A1**
attempts to find at least one of $f\left(\pm \frac{1}{\sqrt{2}}\right)$ (M1)
Note: Award **M1** for an attempt to evaluate $f(x)$ at least at one of their
 $f'(x) = 0$ roots.
 $a = -\frac{1}{2}$ and $b = \frac{1}{2}$ **A1**
Note: Award **A1** for $-\frac{1}{2} \le y \le \frac{1}{2}$.
[6 marks]

© International Baccalaureate Organization 2022 International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ®

Printed for 2 SPOLECZNE LICEUM