Monday 28.11 [32 marks]

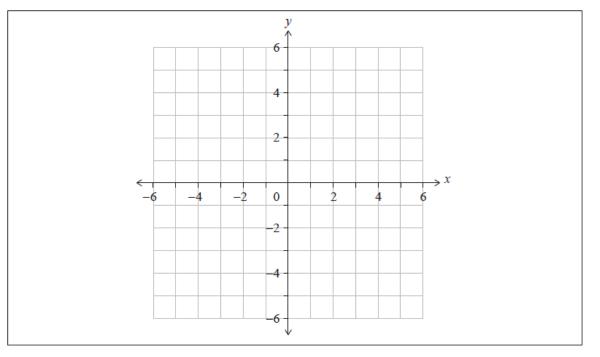
olve the equa	ation $\log_3 \sqrt{x} = rac{1}{2 \log_2 3} + \log_3 ig(4 x^3ig)$, wher	The $x > 0$. [5 matrix

A function f is defined by $f(x) = rac{2x-1}{x+1}$, where $x \in \mathbb{R}, \; x
eq -1.$

The graph of y = f(x) has a vertical asymptote and a horizontal asymptote.

2a. Write down the equation of the vertical asymptote.

2b. Write down the equation of the horizontal asymptote.


[1 mark]

[1 mark]

2c. On the set of axes below, sketch the graph of y=f(x).

[3 marks]

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

2d. Hence, solve the inequality $0 < rac{2x-1}{x+1} < 2.$

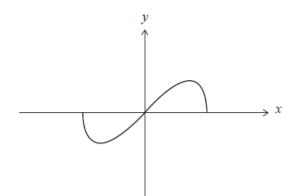
[2 marks]

	 	•••	 	 	 	 •••	 	 	 	 	 		 	 	 		 	 	 	 	 	 	 	
	 		 	 	 	 	 	 	 	 	 	• •	 	 	 	•••	 	 	 •••	 	 	 	 	

^{2e.} Solve the inequality $0 < rac{2 \, | \, x \, | \, -1}{| \, x \, | \, +1} < 2.$

3. A and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

[7 marks]


Show that \cos	$(\mathcal{D} \Lambda + \mathcal{D}) =$	$2\sqrt{2}$	$4\sqrt{5}$
Show that cos	(2A+D) =	27	27

The faces of a fair six-sided die are numbered 1, 2, 2, 4, 4, 6. Let X be the discrete random variable that models the score obtained when this die is rolled.

4a.	Complete t	he probabi	lity distribu	tion table fo	or X .	[2 marks]
	x					
	P(X = x)					
[1	

4b. Find the expected value of X.

A function f is defined by $f(x) = x\sqrt{1-x^2}$ where $-1 \le x \le 1$. The graph of y = f(x) is shown below.

5a. Show that f is an odd function.

[2 marks]

5b. The range of f is $a\leq y\leq b$, where $a,\;b\in\mathbb{R}.$

Find the value of a and the value of b.

© International Baccalaureate Organization 2022 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM