polynomials 3IB HL [88 marks]

1. Let $f(x) = x^4 + px^3 + qx + 5$ where p, q are constants.

[5 marks]

The remainder when f(x) is divided by (x + 1) is 7, and the remainder when f(x) is divided by (x - 2) is 1. Find the value of p and the value of q.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to substitute x = -1 or x = 2 or to divide polynomials (M1)

1 - p - q + 5 = 7, 16 + 8p + 2q + 5 = 1 or equivalent **A1A1**

attempt to solve their two equations M1

p = −3, *q* = 2 **A1** [5 marks]

2. Consider the equation $z^4 + az^3 + bz^2 + cz + d = 0$, where a, b, c, $d \in \mathbb{R}$ [7 marks] and $z \in \mathbb{C}$.

Two of the roots of the equation are $\log_2 6$ and $i\sqrt{3}$ and the sum of all the roots is $3 + \log_2 3$.

Show that 6a + d + 12 = 0.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$-i\sqrt{3}$$
 is a root **(A1)**
 $3 + \log_2 3 - \log_2 6 \left(= 3 + \log_2 \frac{1}{2} = 3 - 1 = 2\right)$ is a root **(A1)**
sum of roots: $-a = 3 + \log_2 3 \Rightarrow a = -3 - \log_2 3$ **M1**

Note: Award M1 for use of -a is equal to the sum of the roots, do not award if minus is missing.

Note: If expanding the factored form of the equation, award **M1** for equating a to the coefficient of z^3 .

product of roots:
$$(-1)^4 d$$
 = $2(\log_2 6)(i\sqrt{3})(-i\sqrt{3})$ M1
= $6\log_2 6$ A1

Note: Award $\emph{M1A0}$ for $d=-6\log_2 6$

 $6a + d + 12 = -18 - 6\log_2 3 + 6\log_2 6 + 12$

EITHER

 $= -6 + 6 \log_2 2 = 0$ *M1A1AG*

Note: *M1* is for a correct use of one of the log laws.

OR

 $= -6 - 6 \log_2 3 + 6 \log_2 3 + 6 \log_2 2 = 0$ M1A1AG

Note: *M1* is for a correct use of one of the log laws.

[7 marks]

3. The cubic equation $x^3 - kx^2 + 3k = 0$ where k > 0 has roots α, β and [5 marks] $\alpha + \beta$.

Given that $lphaeta=-rac{k^2}{4}$, find the value of k.

$$\begin{aligned} \alpha + \beta + \alpha + \beta &= k \text{ (A1)} \\ \alpha + \beta &= \frac{k}{2} \\ \alpha \beta (\alpha + \beta) &= -3k \text{ (A1)} \\ \left(-\frac{k^2}{4} \right) \left(\frac{k}{2} \right) &= -3k \left(-\frac{k^3}{8} = -3k \right) \text{ M1} \\ \text{attempting to solve } -\frac{k^3}{8} + 3k &= 0 \text{ (or equivalent) for } k \text{ (M1)} \\ k &= 2\sqrt{6} \left(= \sqrt{24} \right) (k > 0) \text{ A1} \\ \text{Note: Award A0 for } k &= \pm 2\sqrt{6} \left(\pm \sqrt{24} \right). \\ \text{[5 marks]} \end{aligned}$$

4. The quadratic equation $x^2 - 2kx + (k - 1) = 0$ has roots α and β such [6 marks] that $\alpha^2 + \beta^2 = 4$. Without solving the equation, find the possible values of the real number k.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$\alpha + \beta = 2k \quad \textbf{A1}$$

$$\alpha\beta = k - 1 \quad \textbf{A1}$$

$$(\alpha + \beta)^2 = 4k^2 \Rightarrow \alpha^2 + \beta^2 + 2 \underbrace{k-1}_{k-1} = 4k^2 \quad (\textbf{M1})$$

$$\alpha^2 + \beta^2 = 4k^2 - 2k + 2$$

$$\alpha^2 + \beta^2 = 4 \Rightarrow 4k^2 - 2k - 2 = 0 \quad \textbf{A1}$$
attempt to solve quadratic (**M1**)
$$k = 1, \ -\frac{1}{2} \quad \textbf{A1}$$
[6 marks]

5. The polynomial $x^4 + px^3 + qx^2 + rx + 6$ is exactly divisible by each of [5 marks] (x-1), (x-2) and (x-3).

Find the values of p, q and r.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

substitute each of x = 1,2 and 3 into the quartic and equate to zero (M1)

p+q+r=-7

4p+2q+r=-11 or equivalent (A2)

9p + 3q + r = -29

Note: Award *A2* for all three equations correct, *A1* for two correct.

attempting to solve the system of equations (M1)

p = -7, q = 17, r = -17 **A1**

Note: Only award *M1* when some numerical values are found when solving algebraically or using GDC.

METHOD 2

attempt to find fourth factor (M1)

(x-1) **A1**

attempt to expand $\left(x-1
ight)^2\left(x-2
ight)\left(x-3
ight)$ **M1**

 $x^4 - 7x^3 + 17x^2 - 17x + 6 \ (p = -7, q = 17, r = -17)$ **A2**

Note: Award A2 for all three values correct, A1 for two correct.

Note: Accept long / synthetic division.

[5 marks]

Consider the polynomial $q(x) = 3x^3 - 11x^2 + kx + 8$.

6a. Given that q(x) has a factor (x - 4), find the value of k.

Markscheme

$$q(4) = 0$$
 (M1)

 $192 - 176 + 4k + 8 = 0(24 + 4k = 0)$ A1

 $k = -6$ A1

 [3 marks]

6b. Hence or otherwise, factorize q(x) as a product of linear factors. [3 marks]

```
Markscheme

3x^3 - 11x^2 - 6x + 8 = (x - 4)(3x^2 + px - 2)

equate coefficients of x^2: (M1)

-12 + p = -11

p = 1

(x - 4)(3x^2 + x - 2) (A1)

(x - 4)(3x - 2)(x + 1) A1
```

Note: Allow part (b) marks if any of this work is seen in part (a).

Note: Allow equivalent methods (*eg*, synthetic division) for the *M* marks in each part.

[3 marks]

It is given that $f(x) = 3x^4 + ax^3 + bx^2 - 7x - 4$ where a and b are positive integers.

7a. Given that $x^2 - 1$ is a factor of f(x) find the value of a and the value of [4 marks] b.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $g(x) = 3x^4 + ax^3 + bx^2 - 7x - 4$ $g(1) = 0 \Rightarrow a + b = 8$ M1A1 $g(-1) = 0 \Rightarrow -a + b = -6$ A1 $\Rightarrow a = 7, b = 1$ A1 [4 marks]

7b. Factorize f(x) into a product of linear factors.

Markscheme $3x^4 + 7x^3 + x^2 - 7x - 4 = (x^2 - 1)(px^2 + qx + r)$ attempt to equate coefficients **(M1)** p = 3, q = 7, r = 4 **(A1)** $3x^4 + 7x^3 + x^2 - 7x - 4 = (x^2 - 1)(3x^2 + 7x + 4)$ $= (x - 1)(x + 1)^2(3x + 4)$ **A1 Note:** Accept any equivalent valid method. **[3 marks]**

7c. Using your graph state the range of values of c for which f(x) = c has [3 marks] exactly two distinct real roots.

c > 0 A1 -6.20 < c < -0.0366 A1A1

Note: Award **A1** for correct end points and **A1** for correct inequalities.

Note: If the candidate has misdrawn the graph and omitted the first minimum point, the maximum mark that may be awarded is **A1FTA0A0** for c > -6.20 seen.

[3 marks]

Consider the equation $x^5-3x^4+mx^3+nx^2+px+q=0$, where m , n , p , $q\in\mathbb{R}$

The equation has three distinct real roots which can be written as $\log_2 a$, $\log_2 b$ and $\log_2 c$.

The equation also has two imaginary roots, one of which is $d\mathbf{i}$ where $d\in\mathbb{R}.$

8a. Show that abc = 8.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

recognition of the other root = -di (A1)

 $\log_2 a + \log_2 b + \log_2 c + d\mathbf{i} - d\mathbf{i} = 3$ M1A1

Note: Award *M1* for sum of the roots, *A1* for 3. Award *A0M1A0* for just $\log_2 a + \log_2 b + \log_2 c = 3$.

$$\log_2 abc = 3$$
 (M1)
 $\Rightarrow abc = 2^3$ A1
 $abc = 8$ AG
[5 marks]

[5 marks]

The values a, b, and c are consecutive terms in a geometric sequence.

8b. Show that one of the real roots is equal to 1.

Markscheme METHOD 1 let the geometric series be u_1 , u_1r , u_1r^2 $(u_1r)^3 = 8$ **M1** $u_1r = 2$ **A1** hence one of the roots is $\log_2 2 = 1$ **R1 METHOD 2** $\frac{b}{a} = \frac{c}{b}$ $b^2 = ac \Rightarrow b^3 = abc = 8$ **M1** b = 2 **A1** hence one of the roots is $\log_2 2 = 1$ **R1 [3 marks]**

8c. Given that $q=8d^2$, find the other two real roots.

[9 marks]

METHOD 1

product of the roots is $r_1 \times r_2 \times 1 \times di \times -di = -8d^2$ (M1)(A1) $r_1 \times r_2 = -8$ A1 sum of the roots is $r_1 + r_2 + 1 + di + -di = 3$ (M1)(A1) $r_1 + r_2 = 2$ A1 solving simultaneously (M1) $r_1 = -2, r_2 = 4$ A1A1

METHOD 2

product of the roots $\log_2 a \times \log_2 b \times \log_2 c \times d\mathbf{i} \times -d\mathbf{i} = -8d^2$ **M1A1** $\log_2 a \times \log_2 b \times \log_2 c = -8$ **A1**

EITHER

a, b, c can be written as $\frac{2}{r}$, 2, 2r **M1** $\left(\log_2 \frac{2}{r}\right) \left(\log_2 2\right) \left(\log_2 2r\right) = -8$ attempt to solve **M1** $\left(1 - \log_2 r\right) \left(1 + \log_2 r\right) = -8$ $\log_2 r = \pm 3$ $r = \frac{1}{8}, 8$ **A1A1**

OR

a, b, c can be written as a, 2, $\frac{4}{a}$ **M1** $(\log_2 a) (\log_2 2) (\log_2 \frac{4}{a}) = -8$ attempt to solve **M1** $a = \frac{1}{4}$, 16 **A1A1 THEN** a and c are $\frac{1}{4}$, 16 **(A1)** roots are -2, 4 **A1**

[9 marks]

This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree $3 \ {\rm and} \ 4.$

The cubic equation $x^3+px^2+qx+r=0$, where $p,\ q,\ r\ \in\ \mathbb{R}$, has roots $lpha,\ eta$ and $\gamma.$

9a. By expanding $(x-lpha)(x-eta)(x-\gamma)$ show that:

$$egin{aligned} p &= -(lpha + eta + \gamma) \ q &= lpha eta + eta \gamma + \gamma lpha \ r &= -lpha eta \gamma. \end{aligned}$$

Markscheme

attempt to expand $(x - \alpha)(x - \beta)(x - \gamma)$ **M1**

$$= (x^2 - (lpha + eta)x + lphaeta)(x - \gamma)$$
 OR $= (x - lpha)(x^2 - (eta + \gamma)x + eta\gamma)$ A1

$$(x^3 + px^2 + qx + r) = x^3 - (lpha + eta + \gamma)x^2 + (lpha eta + eta \gamma + \gamma lpha)x - lpha eta \gamma$$
 A1

comparing coefficients:

$$egin{aligned} p &= -(lpha + eta + \gamma) & oldsymbol{AG} \ q &= (lpha eta + eta \gamma + \gamma lpha) & oldsymbol{AG} \ r &= -lpha eta \gamma & oldsymbol{AG} \end{aligned}$$

Note: For candidates who do not include the **AG** lines award full marks.

[3 marks]

9b. Show that $p^2-2q=lpha^2+eta^2+\gamma^2.$

[3 marks]

Markscheme

$$p^2 - 2q = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$
 (A1)
attempt to expand $(\alpha + \beta + \gamma)^2$ (M1)
 $= \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha) - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ or equivalent A1
 $= \alpha^2 + \beta^2 + \gamma^2$ AG
Note: Accept equivalent working from RHS to LHS.
[3 marks]

9c. Hence show that $(lpha-eta)^2+(eta-\gamma)^2+(\gamma-lpha)^2=2p^2-6q.$ [3 marks]

attempt to expand
$$(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2$$
 (M1)

$$= (\alpha^2 + \beta^2 - 2\alpha\beta) + (\beta^2 + \gamma^2 - 2\beta\gamma) + (\gamma^2 + \alpha^2 - 2\gamma\alpha)$$
A1

$$= 2(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$= 2(p^2 - 2q) - 2q \text{ or equivalent}$$
A1

$$= 2p^2 - 6q$$
AG

OR

attempt to write $2p^2 - 6q$ in terms of α , β , γ (M1) $= 2(p^2 - 2q) - 2q$ $= 2(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ A1 $= (\alpha^2 + \beta^2 - 2\alpha\beta) + (\beta^2 + \gamma^2 - 2\beta\gamma) + (\gamma^2 + \alpha^2 - 2\gamma\alpha)$ A1 $= (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2$ AG

Note: Accept equivalent working where LHS and RHS are expanded to identical expressions.

[3 marks]

9d. Given that $p^2 < 3q$, deduce that $lpha,\ eta$ and γ cannot all be real. [2 marks]

Markscheme $p^2 < 3q \Rightarrow 2p^2 - 6q < 0$ $\Rightarrow (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 < 0$ A1 if all roots were real $(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 \ge 0$ R1 Note: Condone strict inequality in the R1 line. Note: Do not award AOR1. \Rightarrow roots cannot all be real AG [2 marks]

Consider the equation $x^3-7x^2+qx+1=0$, where $q\in\mathbb{R}.$

9e. Using the result from part (c), show that when q=17, this equation has *[2 marks]* at least one complex root.

Markscheme $p^2 = (-7)^2 = 49$ and 3q = 51 **A1** so $p^2 < 3q \Rightarrow$ the equation has at least one complex root **R1 Note:** Allow equivalent comparisons; e.g. checking $p^2 < 6q$ [2 marks]

Noah believes that if $p^2 \geq 3q$ then $lpha,\ eta$ and γ are all real.

9f. By varying the value of q in the equation $x^3 - 7x^2 + qx + 1 = 0$, [2 marks] determine the smallest positive integer value of q required to show that Noah is incorrect.

9g. Explain why the equation will have at least one real root for all values of *q*[1 mark]

Markscheme

complex roots appear in conjugate pairs (so if complex roots occur the other root will be real OR all 3 roots will be real).

OR

a cubic curve always crosses the x-axis at at least one point. **R1**

[1 mark]

Now consider polynomial equations of degree 4.

The equation $x^4 + px^3 + qx^2 + rx + s = 0$, where $p, q, r, s \in \mathbb{R}$, has roots α, β, γ and δ . In a similar way to the cubic equation, it can be shown that: $p = -(\alpha + \beta + \gamma + \delta)$

 $egin{array}{ll} q &= lphaeta+lpha\gamma+lpha\delta+eta\gamma+eta\delta+\gamma\delta\ r &= -(lphaeta\gamma+lphaeta\delta+lpha\gamma\delta+lpha\gamma\delta+eta\gamma\delta)\ s &= lphaeta\gamma\delta. \end{array}$

9h. Find an expression for $lpha^2+eta^2+\gamma^2+\delta^2$ in terms of p and q.

[1 mark]

The equation $x^4 - 9x^3 + 24x^2 + 22x - 12 = 0$, has one integer root.

- [1 mark]
- 91. Write down the integer root of this equation.

[1 mark]

9m. By writing $x^4 - 9x^3 + 24x^2 + 22x - 12$ as a product of one linear and [4 marks] one cubic factor, prove that the equation has at least one complex root.

© International Baccalaureate Organization 2022 International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional

Baccalauréat International Bachillerato Internacional

Printed for 2 SPOLECZNE LICEUM