polynomials 3IB HL [88 marks]

1. Let $f(x) = x^4 + px^3 + qx + 5$ where p, q are constants.

[5 marks]

The remainder when $f(x)$ is divided by $(x + 1)$ is 7, and the remainder when $f(x)$ is divided by $(x - 2)$ is 1. Find the value of p and the value of q.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to substitute $x = -1$ or $x = 2$ or to divide polynomials **(M1)**

 $1 - p - q + 5 = 7$, $16 + 8p + 2q + 5 = 1$ or equivalent **AIAI**

attempt to solve their two equations **M1**

 $p = -3$, $q = 2$ **A1 [5 marks]**

2. Consider the equation $z^4 + az^3 + bz^2 + cz + d = 0$, where $a,$ $b,$ $c,$ $d \in \mathbb{R} [7$ marks] and $z \in \mathbb{C}$.

Two of the roots of the equation are log₂6 and $i\sqrt{3}$ and the sum of all the roots is $3 + log₂3$.

Show that $6a + d + 12 = 0$.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$
-i\sqrt{3}
$$
 is a root **(A1)**
3 + log₂3 - log₂6 (= 3 + log₂ $\frac{1}{2}$ = 3 - 1 = 2) is a root **(A1)**
sum of roots: $-a = 3 + log23 \Rightarrow a = -3 - log23$ **M1**

Note: Award M1 for use of $-a$ is equal to the sum of the roots, do not award if minus is missing.

Note: If expanding the factored form of the equation, award **M1** for equating a to the coefficient of z^3 .

product of roots:
$$
(-1)^4 d
$$
 = 2 $(\log_2 6) (i\sqrt{3}) (-i\sqrt{3})$ **M1**
= 6 $\log_2 6$ **A1**

Note: Award $M1A0$ for $d = -6 \log_2 6$

 $6a + d + 12 = -18 - 6 \log_2 3 + 6 \log_2 6 + 12$

EITHER

 $=-6 + 6 \log_2 2 = 0$ **M1A1AG**

Note: M1 is for a correct use of one of the log laws.

OR

M1A1AG $=-6-6 \log_2 3 + 6 \log_2 3 + 6 \log_2 2 = 0$

Note: M1 is for a correct use of one of the log laws.

[7 marks]

3. The cubic equation $x^3 - kx^2 + 3k = 0$ where $k > 0$ has roots α, β and $\alpha + \beta$. [5 marks]

Given that $\alpha\beta = -\frac{k^2}{4}$, find the value of k . $\frac{k^2}{4}$, find the value of k .

$$
\alpha + \beta + \alpha + \beta = k \text{ (A1)}
$$
\n
$$
\alpha + \beta = \frac{k}{2}
$$
\n
$$
\alpha\beta(\alpha + \beta) = -3k \text{ (A1)}
$$
\n
$$
\left(-\frac{k^2}{4}\right)\left(\frac{k}{2}\right) = -3k\left(-\frac{k^3}{8} = -3k\right) \text{ M1}
$$
\nattempting to solve $-\frac{k^3}{8} + 3k = 0$ (or equivalent) for k (M1)\n
$$
k = 2\sqrt{6}\left(=\sqrt{24}\right)(k > 0) \text{ A1}
$$
\nNote: Award A0 for $k = \pm 2\sqrt{6}\left(\pm\sqrt{24}\right)$.\n[5 marks]

 $4.$ The quadratic equation $x^2 - 2kx + (k-1) = 0$ has roots α and β such *[6 marks]* that $\alpha^2+\beta^2=4$. Without solving the equation, find the possible values of the real number k .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. θ θ θ θ

$$
\alpha + \beta = 2k \quad \text{A1}
$$
\n
$$
\alpha\beta = k - 1 \quad \text{A1}
$$
\n
$$
(\alpha + \beta)^2 = 4k^2 \Rightarrow \alpha^2 + \beta^2 + 2k - 1 = 4k^2 \quad \text{(M1)}
$$
\n
$$
\alpha^2 + \beta^2 = 4k^2 - 2k + 2
$$
\n
$$
\alpha^2 + \beta^2 = 4 \Rightarrow 4k^2 - 2k - 2 = 0 \quad \text{A1}
$$
\nattempt to solve quadratic\n
$$
(\text{M1})
$$
\n
$$
k = 1, -\frac{1}{2} \quad \text{A1}
$$
\n[6 marks]

5. The polynomial $x^4+px^3+qx^2+rx+6$ is exactly divisible by each of *[5 marks]* $(x-1)$, $(x-2)$ and $(x-3)$.

Find the values of p , q and r .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

substitute each of $x = 1,2$ and 3 into the quartic and equate to zero $(M1)$

 $p + q + r = -7$

 $4p + 2q + r = -11$ or equivalent **(A2)**

 $9p + 3q + r = -29$

Note: Award **A2** for all three equations correct, **A1** for two correct.

attempting to solve the system of equations **(M1)**

 $p = -7$, $q = 17$, $r = -17$ **A1**

Note: Only award **M1** when some numerical values are found when solving algebraically or using GDC.

METHOD 2

attempt to find fourth factor **(M1)**

 $(x - 1)$ **A1**

attempt to expand $\left(x-1\right)^{2}\left(x-2\right)\left(x-3\right)$ **M1**

 $x^4 - 7x^3 + 17x^2 - 17x + 6$ ($p = -7$, $q = 17$, $r = -17$) **A2**

Note: Award **A2** for all three values correct, **A1** for two correct.

Note: Accept long / synthetic division.

[5 marks]

Consider the polynomial $q(x) = 3x^3 - 11x^2 + kx + 8.$

6a. Given that $q(x)$ has a factor $(x-4)$, find the value of k . [3 marks]

```
Markscheme
q(4)=0 (M1)
192 - 176 + 4k + 8 = 0(24 + 4k = 0) A1
k=-6 A1
[3 marks]
```
6b. Hence or otherwise, factorize $q(x)$ as a product of linear factors. [3 marks]

```
Markscheme
equate coefficients of x^2: (M1)
(x-4)(3x^2+x-2) (A1)
(x-4)(3x-2)(x+1) A1
3x^3 - 11x^2 - 6x + 8 = (x - 4)(3x^2 + px - 2)-12 + p = -11p=1
```
Note: Allow part (b) marks if any of this work is seen in part (a).

Note: Allow equivalent methods (eg, synthetic division) for the **M** marks in each part.

[3 marks]

It is given that $f(x) = 3x^4 + ax^3 + bx^2 - 7x - 4$ where a and b are positive integers.

7a. Given that $x^2 - 1$ is a factor of $f(x)$ find the value of a and the value of $\,$ [4 marks] . *b*

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $g(1) = 0 \Rightarrow a + b = 8$ **M1A1** $g(-1)=0 \Rightarrow -a+b=-6$ **Al** $\Rightarrow a = 7, b = 1$ **Al [4 marks]** $g(x) = 3x^4 + ax^3 + bx^2 - 7x - 4$

7b. Factorize $f(x)$ into a product of linear factors.

Markscheme attempt to equate coefficients **(M1)** $p = 3, q = 7, r = 4$ (A1) $=(x-1)(x+1)^2(3x+4)$ **A1 Note:** Accept any equivalent valid method. **[3 marks]** $3x^4 + 7x^3 + x^2 - 7x - 4 = (x^2 - 1)(px^2 + qx + r)$ $3x^4 + 7x^3 + x^2 - 7x - 4 = (x^2 - 1)(3x^2 + 7x + 4)$

7c. Using your graph state the range of values of c for which $f(x) = c$ has *[3 marks]* exactly two distinct real roots.

 $c > 0$ **A1** $-6.20 < c < -0.0366$ **A1A1**

Note: Award **A1** for correct end points and **A1** for correct inequalities.

Note: If the candidate has misdrawn the graph and omitted the first minimum point, the maximum mark that may be awarded is **A1FTA0A0** for $c > -6.20$ seen.

[3 marks]

.

Consider the equation $x^5 - 3x^4 + mx^3 + nx^2 + px + q = 0$, where m , n , p , $q \in \mathbb{R}$

The equation has three distinct real roots which can be written as $\log_2 a$, $\log_2 b$ and $\log_2 c$.

The equation also has two imaginary roots, one of which is $d{\rm i}$ where $d\in\mathbb{R}.$

8a. Show that $abc = 8$.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 r recognition of the other root $=-d$ i **(A1)**

 $\log_2 a + \log_2 b + \log_2 c + d$ **i** − *d***i** = 3 *M1A1*

Note: Award **M1** for sum of the roots, **A1** for 3. Award **A0M1A0** for just $\log_2 a + \log_2 b + \log_2 c = 3.$

 $\log_2 abc = 3$ (**M1)** $\Rightarrow abc = 2^3$ **A1** $abc = 8$ **AG [5 marks]**

[5 marks]

The values a, b , and c are consecutive terms in a geometric sequence.

8b. Show that one of the real roots is equal to 1.

Markscheme METHOD 1 let the geometric series be u_1 , u_1r , u_1r^2 $(u_1r)^3 = 8$ **M1** $u_1r=2$ **A1** hence one of the roots is $\log_22 = 1$ **R1 METHOD 2** $b^2 = ac \Rightarrow b^3 = abc = 8$ **M1** $b=2$ **A1** hence one of the roots is $\log_22 = 1$ **R1 [3 marks]** $\frac{b}{a} =$ *a c b*

8c. Given that $q = 8d^2$, find the other two real roots.

[9 marks]

METHOD 1

product of the roots is $r_1 \times r_2 \times 1 \times d{\rm i} \times -d{\rm i} = -8d^2$ *(M1)(A1)* **A1** sum of the roots is $r_1 + r_2 + 1 + d$ **i** $+ - d$ **i** $= 3$ (M1)(A1) **A1** solving simultaneously **(M1)** $r_1 = -2, r_2 = 4$ **A1A1** $r_1 \times r_2 = -8$ $r_1 + r_2 = 2$

METHOD 2

product of the roots $\log_2 a \times \log_2 b \times \log_2 c \times d{\rm i}\times -d{\rm i} = -8d^2$ *M1A1* $\log_2 a \times \log_2 b \times \log_2 c = -8$ *A1*

EITHER

 a, b, c can be written as $\frac{2}{r}$, 2, $2r$ **M1** attempt to solve **M1** $r=\frac{1}{8}$, 8 **A1A1** $\frac{2}{r}$, 2, 2r $\left(\log_2 \frac{2}{r}\right)\left(\log_2 2\right)\left(\log_2 2r\right) = -8$ *r* $(1 - \log_2 r)(1 + \log_2 r) = -8$ $\log_2 r = \pm 3$ 8

OR

 a, b, c can be written as $a, 2, \frac{4}{a}$ **M1** attempt to solve **M1** $a = \frac{1}{4}$, 16 **A1A1 THEN** a and c are $\frac{1}{4}$, 16 (A1) roots are −2, 4 **A1** *a* $(\log_2 a)(\log_2 2) (\log_2 \frac{4}{a}) = -8$ *a* 4 4

[9 marks]

This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree 3 and 4 .

The cubic equation $x^3 + px^2 + qx + r = 0$, where $p,~q,~r~\in~\mathbb{R}$, has roots $\alpha,~\beta$ and γ .

9a. By expanding $(x - \alpha)(x - \beta)(x - \gamma)$ show that: [3 marks]

$$
p = -(\alpha + \beta + \gamma)
$$

\n
$$
q = \alpha\beta + \beta\gamma + \gamma\alpha
$$

\n
$$
r = -\alpha\beta\gamma.
$$

Markscheme

attempt to expand $(x - \alpha)(x - \beta)(x - \gamma)$ **M1**

$$
= (x2 - (\alpha + \beta)x + \alpha\beta)(x - \gamma) \text{ OR } = (x - \alpha)(x2 - (\beta + \gamma)x + \beta\gamma)
$$
 AI

$$
(x^3+px^2+qx+r)=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma
$$

comparing coefficients:

$$
p = -(\alpha + \beta + \gamma) \qquad \text{AG}
$$

$$
q = (\alpha\beta + \beta\gamma + \gamma\alpha) \qquad \text{AG}
$$

$$
r = -\alpha\beta\gamma \qquad \text{AG}
$$

Note: For candidates who do not include the **AG** lines award full marks.

[3 marks]

 9 b. Show that $p^2-2q=\alpha^2+\beta^2+\gamma^2.$

Markscheme (A1) attempt to expand $\left(\alpha+\beta+\gamma\right)^2$ (M1) $\sigma=\alpha^2+\beta^2+\gamma^2+2(\alpha\beta+\beta\gamma+\gamma\alpha)-2(\alpha\beta+\beta\gamma+\gamma\alpha)$ or equivalent **AI** $\mathcal{A} = \alpha^2 + \beta^2 + \gamma^2$ **AG Note:** Accept equivalent working from RHS to LHS. $p^2-2q = \left(\alpha + \beta + \gamma\right)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$

9c. Hence show that $(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 = 2p^2 - 6q.$ [3 marks]

Markscheme EITHER

$$
\begin{aligned}\n\text{attempt to expand } & (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 \qquad \text{(M1)} \\
&= (\alpha^2 + \beta^2 - 2\alpha\beta) + (\beta^2 + \gamma^2 - 2\beta\gamma) + (\gamma^2 + \alpha^2 - 2\gamma\alpha) \qquad \text{A1} \\
&= 2(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \\
&= 2(p^2 - 2q) - 2q \text{ or equivalent} \qquad \text{A1} \\
&= 2p^2 - 6q \qquad \text{AG}\n\end{aligned}
$$

OR

attempt to write $2p^2-6q$ in terms of $\alpha,~\beta,~\gamma$ (M1) **A1 A1** $=\left(\alpha - \beta\right)^2 + \left(\beta - \gamma\right)^2 + \left(\gamma - \alpha\right)^2$ *AG* $= 2\bigl(p^2-2q\bigr)\!-\!2q$ $= 2(\alpha^2 + \beta^2 + \gamma^2)$ $-2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $=(\alpha^2+\beta^2-2\alpha\beta)+(\beta^2+\gamma^2-2\beta\gamma)+(\gamma^2+\alpha^2-2\gamma\alpha)$

Note: Accept equivalent working where LHS and RHS are expanded to identical expressions.

[3 marks]

9d. Given that $p^2 < 3q$, deduce that $\alpha, \ \beta$ and γ cannot all be real. $\qquad \qquad \hbox{[2 marks]}$

Markscheme A1 if all roots were real $\left(\alpha - \beta\right)^2 + \left(\beta - \gamma\right)^2 + \left(\gamma - \alpha\right)^2 \geq 0$ *R1* **Note:** Condone strict inequality in the **R1** line. **Note:** Do not award **A0R1**. ⇒roots cannot all be real **AG [2 marks]** $p^2 < 3q \Rightarrow 2p^2 - 6q < 0$ \Rightarrow $(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 < 0$

Consider the equation $x^3 - 7x^2 + qx + 1 = 0$, where $q \in \mathbb{R}$.

9e. Using the result from part (c), show that when $q = 17$, this equation has *[2 marks]* at least one complex root.

Markscheme $p^2=\left(-7\right) ^2=49$ and $3q=51$ **41** so $p^2 < 3q \Rightarrow$ the equation has at least one complex root $\rule{1em}{0.15mm}$ \blacksquare **Note:** Allow equivalent comparisons; e.g. checking *p* ² < 6*q* **[2 marks]**

Noah believes that if $p^2 \geq 3q$ then $\alpha,\ \beta$ and γ are all real.

9f. By varying the value of q in the equation $x^3 - 7x^2 + qx + 1 = 0$, [2 marks] determine the smallest positive integer value of q required to show that Noah is incorrect.

9g. Explain why the equation will have at least one real root for all values of q [1 mark]

Markscheme

complex roots appear in conjugate pairs (so if complex roots occur the other root will be real OR all 3 roots will be real).

OR

.

a cubic curve always crosses the x -axis at at least one point. \blacksquare **R1**

[1 mark]

Now consider polynomial equations of degree $4.$

The equation $x^4 + px^3 + qx^2 + rx + s = 0$, where $p,~q,~r,~s \in \mathbb{R}$, has roots $\alpha,\ \beta,\ \gamma$ and $\delta.$

In a similar way to the cubic equation, it can be shown that:

 $s = \alpha \beta \gamma \delta$. $p = -(\alpha + \beta + \gamma + \delta)$ *q* = *αβ* + *αγ* + *αδ* + *βγ* + *βδ* + *γδ r* = $-(\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta)$

9h. Find an expression for $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ in terms of p and q . [3 marks]

Markscheme attempt to expand $\left(\alpha+\beta+\gamma+\delta\right)^2$ (M1) **(A1)** $(\Rightarrow \alpha^2 + \beta^2 + \gamma^2 + \delta^2 =) p^2 - 2q$ **AI [3 marks]** $(\alpha + \beta + \gamma + \delta)^2 = \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$ \Rightarrow $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$

9i. Hence state a condition in terms of p and q that would imply $x^4+px^3+qx^2+rx+s=0$ has at least one complex root. [1 mark]

9j. Use your result from part (f)(ii) to show that the equation $x^4-2x^3+3x^2-4x+5=0$ has at least one complex root.

[1 mark]

Markscheme $4 < 6$ OR $2^2 - 2 \times 3 < 0$ R1 hence there is at least one complex root. **AG Note:** Allow **FT** from part (f)(ii) for the **R** mark provided numerical reasoning is seen.

[1 mark]

The equation $x^4-9x^3+24x^2+22x-12=0$, has one integer root.

9k. State what the result in part (f)(ii) tells us when considering this equation [1 mark] $x^4 - 9x^3 + 24x^2 + 22x - 12 = 0.$

9l. Write down the integer root of this equation.

[1 mark]

9m. By writing $x^4 - 9x^3 + 24x^2 + 22x - 12$ as a product of one linear and *[4 marks]* one cubic factor, prove that the equation has at least one complex root.

© International Baccalaureate Organization 2022 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM