polynomials 3IB HL [88 marks]

1. Let $f(x) = x^4 + px^3 + qx + 5$ where p, q are constants.

[5 marks]

The remainder when $f(x)$ is divided by $(x + 1)$ is 7, and the remainder when $f(x)$ is divided by $(x - 2)$ is 1. Find the value of p and the value of q.

2. Consider the equation $z^4 + az^3 + bz^2 + cz + d = 0$, where $a,$ $b,$ $c,$ $d \in \mathbb{R} [7$ marks] and $z \in \mathbb{C}$.

Two of the roots of the equation are log₂6 and $i\sqrt{3}$ and the sum of all the roots is $3 + log_2 3$.

Show that $6a + d + 12 = 0$.

3. The cubic equation $x^3 - kx^2 + 3k = 0$ where $k > 0$ has roots α, β and *[5 marks]* $\alpha + \beta$.

Given that $\alpha\beta = -\frac{k^2}{4}$, find the value of k . $\frac{k^2}{4}$, find the value of k .

.

 $4.$ The quadratic equation $x^2 - 2kx + (k-1) = 0$ has roots α and β such *[6 marks]* that $\alpha^2 + \beta^2 = 4$. Without solving the equation, find the possible values of the real number k_\cdot $\alpha^2+\beta^2=4.$ *k*

5. The polynomial $x^4+px^3+qx^2+rx+6$ is exactly divisible by each of , $(x-2)$ and $(x-3)$. $x^4+px^3+qx^2+rx+6$ $\left(x-1\right)$, $\left(x-2\right)$ and $\left(x-3\right)$. [5 marks]

Find the values of p , q and r .

. .

Consider the polynomial $q(x) = 3x^3 - 11x^2 + kx + 8.$

6a. Given that $q(x)$ has a factor $(x-4)$, find the value of k .

[3 marks]

.

6b. Hence or otherwise, factorize $q(x)$ as a product of linear factors. [3 marks]

It is given that $f(x) = 3x^4 + ax^3 + bx^2 - 7x - 4$ where a and b are positive integers.

7a. Given that $x^2 - 1$ is a factor of $f(x)$ find the value of a and the value of $\,$ [4 marks] . *b*

.

7b. Factorize $f(x)$ into a product of linear factors.

[3 marks]

7c. Using your graph state the range of values of c for which $f(x) = c$ has \quad [3 marks] exactly two distinct real roots.

. \cdots

Consider the equation $x^5 - 3x^4 + mx^3 + nx^2 + px + q = 0$, where m , n , p , $q \in \mathbb{R}$

The equation has three distinct real roots which can be written as $\log_2 a$, $\log_2 b$ and $\log_2 c$.

The equation also has two imaginary roots, one of which is $d{\rm i}$ where $d\in\mathbb{R}.$

8a. Show that $abc=8$.

.

[5 marks]

The values a, b , and c are consecutive terms in a geometric sequence.

8b. Show that one of the real roots is equal to 1.

 $\cdots\cdots\cdots$

This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree 3 and 4 .

The cubic equation $x^3 + px^2 + qx + r = 0$, where $p,~q,~r~\in~\mathbb{R}$, has roots $\alpha,~\beta$ and γ .

9a. By expanding $(x - \alpha)(x - \beta)(x - \gamma)$ show that:

[3 marks]

 $r = -\alpha\beta\gamma$. $p = -(\alpha + \beta + \gamma)$ *q* = $\alpha\beta + \beta\gamma + \gamma\alpha$

.

9c. Hence show that $(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 = 2p^2 - 6q.$

[3 marks]

.

Consider the equation $x^3 - 7x^2 + qx + 1 = 0$, where $q \in \mathbb{R}$.

9e. Using the result from part (c), show that when $q = 17$, this equation has *[2 marks]* at least one complex root.

.

Noah believes that if $p^2 \geq 3q$ then $\alpha,\ \beta$ and γ are all real.

.

9f. By varying the value of q in the equation $x^3 - 7x^2 + qx + 1 = 0$, determine the smallest positive integer value of q required to show that Noah is incorrect. [2 marks]

.

9g. Explain why the equation will have at least one real root for all values of q [1 mark]

Now consider polynomial equations of degree $4.$

 $s = \alpha \beta \gamma \delta$.

The equation $x^4 + px^3 + qx^2 + rx + s = 0$, where $p,~q,~r,~s \in \mathbb{R}$, has roots $\alpha,\ \beta,\ \gamma$ and $\delta.$ In a similar way to the cubic equation, it can be shown that: $p = -(\alpha + \beta + \gamma + \delta)$ *q* = $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ *r* = $-(\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta)$

9h. Find an expression for $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ in terms of p and q .

[3 marks]

.

9i. Hence state a condition in terms of p and q that would imply $x^4+px^3+qx^2+rx+s=0$ has at least one complex root. [1 mark]

9j. Use your result from part (f)(ii) to show that the equation $x^4-2x^3+3x^2-4x+5=0$ has at least one complex root. [1 mark]

The equation $x^4-9x^3+24x^2+22x-12=0$, has one integer root.

9k. State what the result in part (f)(ii) tells us when considering this equation [1 mark] $x^4 - 9x^3 + 24x^2 + 22x - 12 = 0.$

9l. Write down the integer root of this equation.

[1 mark]

9m. By writing $x^4-9x^3+24x^2+22x-12$ as a product of one linear and one cubic factor, prove that the equation has at least one complex root. $x^4 - 9x^3 + 24x^2 + 22x - 12$ as a product of one linear and *[4 marks]*

International Baccalaureate® © International Baccalaureate Organization 2022 Baccalauréat International International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional® Bachillerato Internacional

Printed for 2 SPOLECZNE LICEUM