vectors and planes [96 marks]

1. The plane \varPi has the Cartesian equation 2x+y+2z=3 [7 marks]

The line *L* has the vector equation $\mathbf{r} = \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ p \end{pmatrix}$, $\mu, p \in \mathbb{R}$. The acute angle between the line *L* and the plane Π is 30°.

Find the possible values of p.

The lines l_1 and l_2 have the following vector equations where $\lambda, \ \mu \in \mathbb{R}$ and $m \in \mathbb{R}$.

	$\begin{pmatrix} 3 \end{pmatrix}$		$\left(\begin{array}{c} 2 \end{array} \right)$		(-1)		$\begin{pmatrix} 2 \end{pmatrix}$	
$l_1:r_1=$	-2	$+\lambda$	1	$l_2:r_2=$	-4	$+\mu$	-5	
	0/		$\binom{m}{m}$	$l_2:r_2=$	$\langle -2m \rangle$		(-m)	

2a. Show that l_1 and l_2 are never perpendicular to each other.

The plane Π has Cartesian equation x + 4y - z = p where $p \in \mathbb{R}$. Given that l_1 and Π have no points in common, find

- 2b. the value of m.
- 2c. the condition on the value of p.

The points A(5, -2, 5), B(5, 4, -1), C(-1, -2, -1) and D(7, -4, -3) are the vertices of a right-pyramid.

- ^{3a.} Find the vectors \overrightarrow{AB} and \overrightarrow{AC} . [2 marks]
- ^{3b.} Use a vector method to show that $B\widehat{A}C = 60^{\circ}$. [3 marks]

[2 marks]

[3 marks]

[2 marks]

3c. Show that the Cartesian equation of the plane \varPi that contains the triangle ${ m ABC}$ is $-x+y+z=-2.$	[3 marks]
The line L passes through the point ${ m D}$ and is perpendicular to $\varPi.$	
3d. Find a vector equation of the line L .	[1 mark]
3e. Hence determine the minimum distance, d_{\min} , from ${ m D}$ to \varPi .	[4 marks]
3f. Find the volume of right-pyramid ABCD .	[4 marks]
Consider the three planes	
$\prod_1: 2x - y + z = 4$	
$\prod_2: x-2y+3z=5$ $\prod x - 0x + 2y - 2z - 22$	
$\prod_3:-9x+3y-2z=32$	
4a. Show that the three planes do not intersect.	[4 marks]
4b. Verify that the point $\mathrm{P}(1,\ -2,\ 0)$ lies on both \prod_1 and \prod_2 .	[1 mark]
4c. Find a vector equation of L , the line of intersection of \prod_1 and \prod_2 .	[4 marks]
4d. Find the distance between L and \prod_3 .	[6 marks]
Consider the vectors a and b such that $a=inom{12}{-5}$ and $ b =15.$	
5a. Find the possible range of values for $ a+b .$	[2 marks]
Consider the vector p such that $p=a+b.$	
5b. Given that $ a+b $ is a minimum, find $p.$	[2 marks]

Consider the vector
$$q$$
 such that $q=inom{x}{y}$, where $x,\;y\in\mathbb{R}^+.$

5c. Find q such that |q| = |b| and q is perpendicular to a.

[5 marks]

Two airplanes, \boldsymbol{A} and $\boldsymbol{B},$ have position vectors with respect to an origin \boldsymbol{O} given respectively by

 $r_A = \begin{pmatrix} 19\\-1\\1 \end{pmatrix} + t \begin{pmatrix} -6\\2\\4 \end{pmatrix}$ $r_B = \begin{pmatrix} 1\\0\\12 \end{pmatrix} + t \begin{pmatrix} 4\\2\\-2 \end{pmatrix}$

where t represents the time in minutes and $0 \le t \le 2.5$.

Entries in each column vector give the displacement east of O, the displacement north of O and the distance above sea level, all measured in kilometres.

- 6a. Find the three-figure bearing on which airplane B is travelling. [2 marks]
- 6b. Show that airplane A travels at a greater speed than airplane B. [2 marks]
- 6c. Find the acute angle between the two airplanes' lines of flight. Give your [4 marks] answer in degrees.

The two airplanes' lines of flight cross at point P.

6d. Find the coordinates of P.

- [5 marks]
- 6e. Determine the length of time between the first airplane arriving at P and <code>[2 marks]</code> the second airplane arriving at P.
- 6f. Let D(t) represent the distance between airplane A and airplane B for [5 marks] $0 \le t \le 2.5$.

Find the minimum value of D(t).

Three points $\mathrm{A}(3,\ 0,\ 0),\ \mathrm{B}(0,\ -2,\ 0)$ and $\mathrm{C}(1,\ 1,\ -7)$ lie on the pla	ane $\Pi_1.$
^{7a.} Find the vector \overrightarrow{AB} and the vector \overrightarrow{AC} .	[2 marks]
7b. Hence find the equation of $arPi_1$, expressing your answer in the form $ax+by+cz=d$, where $a,\ b,\ c,\ d\in\mathbb{Z}.$	[5 marks]
Plane \varPi_2 has equation $3x-y+2z=2.$	
7c. The line L is the intersection of Π_1 and Π_2 . Verify that the vector equation of L can be written as $r = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.	[2 marks]
The plane $arPi_3$ is given by $2x-2z=3.$ The line L and the plane $arPi_3$ interthe point $\mathrm{P}.$	ersect at
7d. Show that at the point $\mathrm{P}, \; \lambda = rac{3}{4}.$	[2 marks]
7e. Hence find the coordinates of \mathbf{P} .	[1 mark]
The point ${ m B}(0,\ -2,\ 0)$ lies on $L.$	
7f. Find the reflection of the point ${ m B}$ in the plane $\varPi_3.$	[7 marks]
7g. Hence find the vector equation of the line formed when L is reflected in the plane $\varPi_3.$	[2 marks]
D International Baccalaureate Organization 2022	International Baccalaureat Baccalauréat Internationa

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM