Binomial Theorem 3IB [39 marks]

1. In the expansion of $\left(x+k
ight)^7$, where $k\in\mathbb{R}$, the coefficient of the term in [5 marks] x^5 is 63.

Find the possible values of k.

Markscheme

attempt to use the binomial expansion of $(x + k)^7$ (M1) ${}^7C_0x^7k^0 + {}^7C_1x^6k^1 + {}^7C_2x^5k^2 + \dots$ (or ${}^7C_0k^7x^0 + {}^7C_1k^5x^1 + {}^7C_2k^5x^2 + \dots$) identifying the correct term ${}^7C_2x^5k^2$ (or ${}^7C_5k^2x^5$) (A1) OR attempt to use the general term ${}^7C_rx^rk^{7-r}$ (or ${}^7C_rk^rx^{7-r}$) (M1) r = 2 (or r = 5) (A1) THEN ${}^7C_2 = 21$ (or ${}^7C_5 = 21$ (seen anywhere) (A1) $21x^5k^2 = 63x^5(21k^2 = 63, k^2 = 3)$ A1 $k = \pm\sqrt{3}$ A1

Note: If working shown, award *M1A1A1A1A0* for $k = \sqrt{3}$.

[5 marks]

2. Consider the expansion of $(3 + x^2)^{n+1}$, where $n \in \mathbb{Z}^+$. [5 marks] Given that the coefficient of x^4 is 20 412, find the value of n.

METHOD 1

product of a binomial coefficient, a power of 3 (and a power of x^2) seen **(M1)** evidence of correct term chosen **(A1)**

$$^{n+1}C_2 imes 3^{n+1-2} imes \left(x^2
ight)^2 \left(=rac{n\left(n+1
ight)}{2} imes 3^{n-1} imes x^4
ight)$$
 or $n-r=1$

equating their coefficient to 20412 or their term to $20412x^4$ (M1)

EITHER

$$^{n+1}C_2 imes 3^{n-1} = 20412$$
 (A1)

OR

 $^{r+2}C_r imes 3^r=20412\Rightarrow r=6$ (A1)

THEN

n=7 A1

METHOD 2

$$3^{n+1}\Big(1+rac{x^2}{3}\Big)^{n+1}$$

product of a binomial coefficient, and a power of $\frac{x^2}{3}$ **OR** $\frac{1}{3}$ seen **(M1)** evidence of correct term chosen **(A1)**

$$3^{n+1} imes rac{n(n+1)}{2!} imes \left(rac{x^2}{3}
ight)^2 \left(=rac{3^{n-1}}{2}n(n+1)x^4
ight)$$

equating their coefficient to 20412 or their term to $20412x^4$ (M1) $3^{n-1} \times \frac{n(n+1)}{2} = 20412$ (A1) n = 7 A1 [5 marks]

^{3.} Consider the expansion of $(3x^2 - \frac{k}{x})^9$, where k > 0. The coefficient of the term in x^6 is 6048. Find the value of k. [6 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r). **(M1)**

$$\binom{9}{r} (3x^2)^{9-r} (-\frac{k}{x})^r, \ (3x^2)^9 + \binom{9}{1} (3x^2)^8 (-\frac{k}{x})^1 + \binom{9}{2} (3x^2)^7 (-\frac{k}{x})^2 + \dots$$

valid attempt to identify correct term (M1)

eg
$$2(9-r){-}r=6 \ , \ ig(x^2ig)^rig(x^{-1}ig)^{9-r}=x^6$$

identifying correct term (may be indicated in expansion) (A1)

eg
$$r=4, r=5$$

correct term or coefficient in binominal expansion (A1)

eg
$$\binom{9}{4} (3x^2)^5 \left(-rac{k}{x}
ight)^4, \ 126 \left(243x^{10}
ight) \left(rac{k^4}{x^4}
ight), \ 30618k^4$$

correct equation in k (A1)

eg
$$\binom{9}{4}(243)(k^4)x^6 = 6048x^6$$
, $30618k^4 = 6048$
 $k = \frac{2}{3}$ (exact) 0.667 **A1 N3**

Note: Do not award *A1* if additional answers given. [6 marks]

4. Find the term independent of x in the expansion of $\frac{1}{x^3} \left(\frac{1}{3x^2} - \frac{x}{2} \right)^9$.

[6 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

use of Binomial expansion to find a term in either

$$\left(\frac{1}{3x^2}-\frac{x}{2}\right)^9$$
, $\left(\frac{1}{3x^{7/3}}-\frac{x^{2/3}}{2}\right)^9$, $\left(\frac{1}{3}-\frac{x^3}{2}\right)^9$, $\left(\frac{1}{3x^3}-\frac{1}{2}\right)^9$ or $(2-3x^3)^9$ (M1)(A1)

Note: Award **M1** for a product of three terms including a binomial coefficient and powers of the two terms, and **A1** for a correct expression of a term in the expansion.

finding the powers required to be 2 and 7 (M1)(A1)

constant term is ${}_9C_2 imes \left(rac{1}{3}
ight)^2 imes \left(-rac{1}{2}
ight)^7$ (M1)

Note: Ignore all *x*'s in student's expression.

therefore term independent of x is $-rac{1}{32} \left(=-0.03125
ight)$ **A1**

[6 marks]

5. Consider the expansion of $(2+x)^n$, where $n \ge 3$ and $n \in \mathbb{Z}$. [6 marks] The coefficient of x^3 is four times the coefficient of x^2 . Find the value of n.

attempt to find coefficients in binomial expansion (M1)

coefficient of
$$x^2 \colon inom{n}{2} imes 2^{n-2}$$
 ; coefficient of $x^3 \colon inom{n}{3} imes 2^{n-3}$ A1A1

Note: Condone terms given rather than coefficients. Terms may be seen in an equation such as that below.

$$inom{n}{3} imes 2^{n-3}=4inom{n}{2} imes 2^{n-2}$$
 (A1)

attempt to solve equation using GDC or algebraically (M1)

$$\binom{n}{3} = 8 \binom{n}{2}$$
$$\frac{n!}{3!(n-3)!} = \frac{8n!}{2!(n-2)!}$$
$$\frac{1}{3} = \frac{8}{n-2}$$
$$n = 26 \qquad \textbf{A1}$$
$$[6 marks]$$

6. The coefficient of x^2 in the expansion of $(\frac{1}{x} + 5x)^8$ is equal to the *[6 marks]* coefficient of x^4 in the expansion of $(a + 5x)^7$, $a \in \mathbb{R}$. Find the value of a.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

```
METHOD 1

{}^{8}C_{r} \left(\frac{1}{x}\right)^{8-r} (5x)^{r} = {}^{8}Cr(5)^{r}x^{2r-8} (M1)

r = 5 (A1)

{}^{8}C_{5} \times 5^{5} = {}^{7}C_{4}a^{3} \times 5^{4} M1A1

56 \times 5 = 35a^{3}

a^{3} = 8 (A1)

a = 2 A1

METHOD 2

attempt to expand both binomials M1

175000x^{2} A1

21875a^{3}x^{4} A1

175000 = 21875a^{3} M1

a^{3} = 8 (A1)

a = 2 A1

[6 marks]
```

7. Consider the expansion of $(8x^3 - \frac{1}{2x})^n$ where $n \in \mathbb{Z}^+$. Determine all [5 marks] possible values of n for which the expansion has a non-zero constant term.

EITHER

attempt to obtain the general term of the expansion

$$T_{r+1} = {}_{n}C_{r} (8x^{3})^{n-r} (-\frac{1}{2x})^{r} \text{ OR } T_{r+1} = {}_{n}C_{n-r} (8x^{3})^{r} (-\frac{1}{2x})^{n-r}$$
 (M1)

OR

recognize power of x starts at 3n and goes down by 4 each time **(M1)**

THEN

recognizing the constant term when the power of x is zero (or equivalent) **(M1)**

$$r=rac{3n}{4}$$
 or $n=rac{4}{3}r$ or $3n-4r=0$ OR $3r-(n-r)=0$ (or equivalent)
A1

r is a multiple of $3~(r=3,6,9,\ldots)$ or one correct value of n (seen anywhere) (A1)

$$n=4k,\;k\in\mathbb{Z}^+$$
 Al

Note: Accept n is a (positive) multiple of 4 or $n=4,8,12,\ldots$ Do not accept n=4,8,12

Note: Award full marks for a correct answer using trial and error approach showing $n = 4, 8, 12, \ldots$ and for recognizing that this pattern continues.

[5 marks]

© International Baccalaureate Organization 2022

International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ®

Printed for 2 SPOLECZNE LICEUM