Binomial Theorem 3IB [39 marks]

- 1. In the expansion of $(x+k)^7$, where $k \in \mathbb{R}$, the coefficient of the term in [5 marks] x^5 is 63. Find the possible values of k.
- 2. Consider the expansion of $\left(3+x^2
 ight)^{n+1}$, where $n\in\mathbb{Z}^+$. [5 marks] Given that the coefficient of x^4 is 20 412, find the value of n.
- ^{3.} Consider the expansion of $(3x^2 \frac{k}{x})^9$, where k > 0. [6 marks] The coefficient of the term in x^6 is 6048. Find the value of k.
- 4. Find the term independent of x in the expansion of $\frac{1}{x^3} \left(\frac{1}{3x^2} \frac{x}{2} \right)^9$. [6 marks]
- 5. Consider the expansion of $(2 + x)^n$, where $n \ge 3$ and $n \in \mathbb{Z}$. [6 marks] The coefficient of x^3 is four times the coefficient of x^2 . Find the value of n.
- 6. The coefficient of x^2 in the expansion of $(\frac{1}{x} + 5x)^8$ is equal to the *[6 marks]* coefficient of x^4 in the expansion of $(a + 5x)^7$, $a \in \mathbb{R}$. Find the value of a.
- 7. Consider the expansion of $(8x^3 \frac{1}{2x})^n$ where $n \in \mathbb{Z}^+$. Determine all [5 marks] possible values of n for which the expansion has a non-zero constant term.

Printed for 2 SPOLECZNE LICEUM